Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (5): 423-428    DOI: 10.11902/1005.4537.2014.219
Current Issue | Archive | Adv Search |
Relations between Microstructure and Exfoliation Corrosion Resistance of 7050 Al-alloy
Feng ZHAO1,2(),Fayun LU1,2,Nan MU1,2,Fuan GUO1,2,Li ZHANG1
1. National Engineering Research Center for Plastic Working of Aluminium Alloys, Shandong Nanshan Aluminium Co., Ltd., Yantai 265713, China
2. Beijing Nanshan Institute of Aeronautical Materials, Beijing 100048, China
Download:  HTML  PDF(5743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure characteristics, exfoliation corrosion behavior of 7050-T7451Al- alloy plates were examined by optical microscopy, scanning electron microscopy and Image Pro Plus. The effect of the distribution of grain boundary precipitates, the fraction of recrystallized grains and the length-width ratio of grains on the exfoliation corrosion behavior was investigated. The results indicate that the microstructures of the 7050-T7451 plates fabricated by different processes are composed of recrystallized grains and non-recrystallized grains with precipitates distributed discontinuously along grain boundaries; but which varied corresponding to the relevant fabrication processes. The average length-width ratio of grains plays an important role in the exfoliation corrosion process of the plate, while the influence of the discontinuity of precipitates distribution and the fraction of recrystallized grains is weak. When the precipitates distribute discontinuously along grain boundaries and the average length-width ratio of grains is less than 5, the EXCO resistance of 7050-T7451 plate can reach EA degree or better.

Key words:  7050-T7451 aluminum alloy      exfoliation corrosion      grain aspect ratio      grain boundary precipitate     
ZTFLH:     
Fund:  

Cite this article: 

Feng ZHAO, Fayun LU, Nan MU, Fuan GUO, Li ZHANG. Relations between Microstructure and Exfoliation Corrosion Resistance of 7050 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2015, 35(5): 423-428.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.219     OR     https://www.jcscp.org/EN/Y2015/V35/I5/423

Fig.1  GBP characteristics of No.1 (a), No.2 (b) and No.3 (c) samples
Fig.2  Bright field OM images of the grains of No.1 (a, d), No.2 (b, e) and No.3 (c, f) samples
Fig.3  Characteristics of the grains in polarized light field (a~c) and graphs of grain aspect ratios (d~f) for No.1 (a, d), No.2 (b, e) and No.3 (c, f) samples
Fig.4  Surface appearances (a, c, e) and corrosion products (b, d, f) of No.1 (a, b), No.2 (c, d) and No.3 (e, f) samples after exfoliation corrosion for 48 h
Fig.5  OM micrographs of longitudinal sections of No.1 (a), No.2 (b) and No.3 (c) samples after exfoliation corrosion
Fig.6  Corrosion depths along the longitudial sections of No.1 (a), No.2 (b) and No.3 (c) samples after exfoliation corrosion
Fig.7  Mean grain dimensions and effect of grain shape on depths of EXCO in the top surface, 1/4 layer, 1/2 layer of 2014 alloy[11]
[1] Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications[J]. Mater. Sci. Eng., 2000, A280(1): 102
[2] Cottis B, Graham M, Lindsay R, et al. Shreir's Corrosion [M]. Amsterdam: Elsevier, 1974
[3] Chubb J. The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium[J]. Int. J. Fatigue, 1995, 17(1): 49
[4] Robinson M J, Jackson N C. The influence of grain structure and intergranular corrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg alloys[J]. Corros. Sci., 1999, 41(5): 1013
[5] Robinson M J. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys[J]. Corros. Sci., 1982, 22(8): 775
[6] Xu X J, Wu G C, Wang B, et al. Sr addition on intergranular and exfoliation corrosion properties of 7085 aluminum alloy[J]. Trans. Mater. Heat Treat., 2011, 32(5): 22 (许晓静, 吴桂潮, 王彬等. 含Sr7085型铝合金的晶间腐蚀和剥落腐蚀性能[J]. 材料热处理学报, 2011, 32(5): 22)
[7] Fang H C, Chen K H, Chen X, et al. Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy[J]. Corros. Sci., 2009, 51(12): 2872
[8] GB/T 22639-2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys[S] (GB/T 22639-2008. 铝合金加工产品的剥落腐蚀实验方法 22639-2008. 铝合金加工产品的剥落腐蚀实验方法[S])
[9] Yan D J, Zhang Y D. Effect of ageing condition on SCC resistance and exfoliation corrosion behavior of 7475 and 7050 Al alloys[J]. J. Mater. Eng., 1993, (2): 13 (阎大京, 张宇东. 时效制度对7475和7050铝合金应力腐蚀及剥层腐蚀性能的影响[J]. 材料工程, 1993, (2): 13)
[10] Zhang H F, Chen Q. Influence of aging treatment on intergranular corrosion and exfoliation corrosion susceptibility of super-high strength Al alloy containing Sc[J]. Corros. Prot., 2012, 33(2): 127 (张海锋, 陈琴. 时效制度对含钪超高强铝合金晶间腐蚀和剥落腐蚀的影响[J]. 腐蚀与防护, 2012, 33(2): 127)
[11] Robinson M J, Jackson N C. Exfoliation corrosion of high strength Al-Cu-Mg alloys: Effect of grain structure[J]. Br. Corros. J., 1999, 34(1): 45
[12] Zhao F, Cao L Y, Lang Y J, et al. The influence of inhomogeneous deformation on the microstructures and properties of thick-plate 7150 alloy[J]. Mater. Sci. Forum, 2013, 749: 250
[13] Su J X, Zhang Z, Cao F H, et al. Review on the intergranular corrosion and exfoliation corrosion of aluminum alloys[J]. J. Chin. Soc.Corros. Prot., 2005, 25(3): 187 (苏景新, 张昭, 曹发和等. 铝合金的晶间腐蚀与剥蚀[J]. 中国腐蚀与防护学报, 2005, 25(3): 187)
[1] Min CAO, Li LIU, Zhongfen YU, Ying LI, Fuhui WANG. Exfoliation Corrosion Behavior of 2A02 Al-alloy in a Simulated Marine Atmospheric Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 502-510.
[2] Bo JI,Xinming ZHANG,Zhuofu ZHANG,Lingying YE,Wenjian LI. Influence of Yb Addition on Resistance to Exfoliation Corrosion of Aluminum Alloy 2519A[J]. 中国腐蚀与防护学报, 2015, 35(3): 279-286.
[3] HUANG Changlong, WAN Xiaopeng, ZHAO Meiying, XU Hairong. EFFECTS OF AXIAL STRESS ON EXFOLIATION CORROSION OF 7150 ALLOY[J]. 中国腐蚀与防护学报, 2011, 31(2): 135-138.
[4] HUANG Changlong, XU Hairong. EFFECTS OF TEMPER ON EXFOLIATION CORROSION OF 7150 ALLOY[J]. 中国腐蚀与防护学报, 2010, 30(6): 487-490.
[5] SUN Shuangqing ZHENG Qifei LI Defu CHEN Jie WEN Junguo. LONG-TERM ATMOSPHERIC CORROSION BEHAVIOR OF LY12 ALUMINIUM ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(6): 442-446.
[6] LIANG Wenjie PAN Qinglin LI Yunchun HE Yunbin LI Wenbin ZHOU Yingchun LU Congge. EXFOLIATION CORROSION BEHAVIORS OF Al-Cu-Li-(Sc+Zr) ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(1): 30-34.
[7] Yue Wang; Zhenghong Wang; Zilai Wu; Haifeng Zhang. STRESS CORROSION CRACKING AND EXFOLIATION CORROSION RESISTANCE OF Al-Mg ALLOY WITH ADDITION OF SCANDIUM[J]. 中国腐蚀与防护学报, 2005, 25(4): 218-221 .
[8] Jinfeng Li; Ziqiao Zheng; Zhao Zhang; Jianqing Zhang. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY OF Al ALLOYS DURING EXFOLIATION CORROSION[J]. 中国腐蚀与防护学报, 2005, 25(1): 48-52 .
[9] . Intergraular Corrosion and Exfoliation Behaviors of Peak-Aged AA2090 and AA8090 Al-Li Alloys[J]. 中国腐蚀与防护学报, 2004, 24(3): 135-142 .
No Suggested Reading articles found!