Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (6): 549-555    DOI: 10.11902/1005.4537.2014.233
Current Issue | Archive | Adv Search |
Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer
Qimeng CHEN1,Junxi ZHANG1(),Xujie YUAN1,2,Nianwei DAI1
1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
2. China Classification Society-Det Norske Veritas Technology Institute, Shanghai 210417, China
Download:  HTML  PDF(792KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of an applied alternating electric field on the oxygen diffusion coefficient in thin electrolyte layers on an electrode of stainless steel was investigated by chronoamperometry. The results show that the oxygen diffusion coefficient increased with the decrease in TEL thickness, as well as the increase in AEF strength. The effect of AEF on the oxygen diffusion coefficient is found to be due to that the migration of oxygen form the gas/liquid interface to electrode surface was accelerated by the applied electric field. For a thinner electrolyte layer by a stronger applied electric field, the cathodic process of the electrode would be more intensive,which corresponds to higher corrosion rate of metal.

Key words:  chronoamperometry      atmospheric corrosion      oxygen reduction      kinetic parameter      thin electrolyte layer     

Cite this article: 

Qimeng CHEN,Junxi ZHANG,Xujie YUAN,Nianwei DAI. Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer. Journal of Chinese Society for Corrosion and protection, 2015, 35(6): 549-555.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.233     OR     https://www.jcscp.org/EN/Y2015/V35/I6/549

Fig.1  Schematic diagrams of the experiment arrangement for TELs corrosion tests under external electric field: (a) transverse cross-sectional view, (b) top view of electrochemical cell
Fig.2  Cathodic polarization curves of Pt in 0.35%NaCl TEL with various thicknesses under absent alternating electric field
Fig.3  Transient curves (a) and plots of 1/[iF(t )]2 vs time (b) of Pt in 0.35%NaCl TEL with various thicknes-sses under absent alternating electric field
Fig.4  Plots of Δ{1/[iF(t )]2}/Δt vs time for Pt in 0.35%NaCl TEL with various thicknesses under absent alternating electric field
Fig.5  Changes of D/D0 with thickness of 0.35%NaCl TEL under different alternating electric fields
Fig.6  Changes of D/D0 with alternating electric field intensity for O in 0.35%NaCl TEL with different thicknesses
Fig.7  Plots of Δ{1/[iF(t )]2}/Δt vs time for 0.35%NaCl TEL with various thicknesses under alternating electric field of 100 kV/m (a), 200 kV/m (b) and 400 kV/m (c)
Fig.8  Models of electric double layers without (a) andwith (b) applications of alternating electric field
[1] Nishikata A, Ichihara Y, Hayashi Y, et al.Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron[J]. J. Electrochem. Soc., 1997, 144: 1244
[2] Katayama H, Kuroda S.Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn-Al coatings exposed in a coastal area[J]. Corros. Sci., 2013, 76: 35
[3] Monnier J, Réguer S, Foy E, et al.XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion[J]. Corros. Sci., 2014, 78: 293
[4] Muster T H, Bradbury A, Trinchi A, et al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochem. Acta, 2011, 56(4): 1866
[5] Ligier V, Wéry M, Hihn J Y, et al.Formation of the main atmospheric zinc end products: NaZn4Cl(OH)6SO46H2O, Zn4SO4(OH)6nH2O and Zn4Cl2(OH)4SO45H2O in [Cl-][SO42-][HCO3-][H2O2] electrolytes[J]. Corros. Sci., 1999, 41(6): 1139
[6] Barranco V, FeliuJr S, Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution. Part 1: Directly exposed coatings[J]. Corros. Sci., 2004, 46(9): 2203
[7] Prosek T, Thierry D, Taxén C, et al.Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions[J]. Corros. Sci., 2007, 49(6): 2676
[8] Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I[J]. Corros. Sci., 1995, 37(10): 1567
[9] Wendt J L, Chin D T.The a.c. corrosion of stainless steel—II. The breakdown of passivity of SS304 in neutral aqueous solutions[J]. Corros. Sci., 1985, 25(10): 889
[10] Zhang J X, Yuan J, Qiao Y N, et al.The corrosion and passivation of SS304 stainless steel under square wave electric field[J]. Mater. Chem. Phys., 2003, 79(1): 43
[11] Kim D K, Muralidharan S, Ha T H, et al.Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments[J]. Electrochem. Acta, 2006, 51(25): 5259
[12] Huang H L, Guo X P, Zhang G A, et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J]. Corros. Sci., 2011, 53(10): 3446
[13] Huang H L, Pan Z Q, Guo X P, et al.Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corros. Sci., 2013, 75: 100
[14] Yuan X J, Zhang J X, Chen Q M, et al.Corrosion behavior of zinc covered with thin electrolyte layers under external electric field[J]. J. Electrochem., 2013, 19(5): 430
[14] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属锌在薄液膜下的腐蚀电化学研究[J]. 电化学, 2013, 19(5): 430)
[15] Yuan X J, Zhang J X, Chen Q M, et al.Corrosion science and protection technology, electrochemical process of Zn electrode covered with thinelectrolyte layer under external electric field[J]. Corros. Sci. Prot. Technol., 2014, 26(3): 197
[15] (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 197)
[16] Jiang L L, Wu L K, Hu J M, et al.Electrodeposition of protective organosilane films from a thin layer of precursor solution[J]. Corros. Sci., 2012, 60: 309
[17] Stroe van A J, Janssen L J J. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique[J]. Anal. Chim. Acta, 1993, 279(2): 213
[18] Buffle J, Pelletier M, Monnier D.Chronopotentiometric study of the oxidation of some diluted amalgams in the presence of traces of oxygen dissolved in aqueous solution: Part II: Study of the influence of various parameters on the reaction rate[J]. J. Electroanal. Chem. Interfacial Electrochem., 1973, 43(2): 185
[19] Ju L K, Ho C S.The measurement of oxygen diffusion coefficients in polymeric solutions[J]. Chem. Eng. Sci., 1986, 41(3): 579
[20] Ho C S, Ju L K.Simultaneous measurement of oxygen diffusion coefficients and solubilities in electrolyte solutions with a polarographic oxygen electrode[J]. Chem. Eng. Sci., 1988, 43(11): 3093
[21] Verhallen P T H M, Oomen L J P, Elsen A J J, et al. The diffusion coefficients of helium, hydrogen, oxygen and nitrogen in water determined from the permeability of a stagnant liquid layer in the quasi-s[J]. Chem. Eng. Sci., 1984, 39(11): 1535
[22] Castellote M, Alonso C, Andrade C, et al.Oxygen and chloride diffusion in cement pastes as a validation of chloride diffusion coefficients obtained by steady-state migration tests[J]. Cem. Concr. Res., 2001, 31(4): 621
[23] Zhang L, Ma C S, Mukerjee S.Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface[J]. J. Electroanal. Chem., 2004, 568: 273
[24] Beattie P D, Basura V I, Holdcroft S.Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces[J]. J. Electroanal. Chem., 1999, 468(2): 180
[25] Li Q, McAuley C B, Lawrence N S, et al. Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-n-butylammonium perchlorate supporting electrolyte: The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures[J]. J. Electroanal. Chem., 2013, 688: 328
[26] Jiang J H, Rajagopalan K.Oxygen reduction reaction on a mini gas diffusion electrode[J]. Electrochim. Acta, 2011, 58: 717
[27] Scharifker B R, Zelenay P, Bockris J O M. The kinetics of oxygen reduction in molten phosphoric acid at high temperatures[J]. J. Electrochem. Soc., 1987, 134: 2714
[28] Lee H K, Park J H, Kim D Y, et al.A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC[J]. J. Power Sources, 2004, 131(1/2): 200
[29] Tsai C R, Chen F L, Ruo A C, et al.An analytical solution for transport of oxygen in cathode gas diffusion layer of PEMFC[J]. J. Power Sources, 2006, 160(1): 50
[30] Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci.,2011, 53(10): 3289
[31] Liu W J, Cao F H, Chen A, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour[J]. Corros. Sci., 2010, 52(2): 627
[32] Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14
[33] Cheng Y L, Zhang Z, Cao F H, et al.A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46(7): 1649
[34] Frankel G S, Stratmann M, Rohwerder M, et al.Potential control under thin aqueous layers using a kelvin probe[J]. Corros. Sci., 2007, 49(4) : 2021
[35] Zhang S H, Lyon S B.The electrochemistry of iron, zinc and copper in thin layer electrolytes[J]. Corros. Sci., 1993, 35(1-4): 713
[36] Tani Y, Nohira T, Enomoto T, et al.Solubility and diffusion coefficient of oxygen in 1-ethyl-1-methylpyrrolidinium fluorohydrogenate room temperature ionic liquid at 298~373 K[J]. Electrochim. Acta, 2011, 56(11): 3852
[37] Haibara M, Hashizume S, Munakata H, et al.Solubility and diffusion coefficient of oxygen in protic ionic liquids with different fluoroalkyl chain lengths[J]. Electrochim. Acta, 2014, 132: 208
[38] Laitinen H A, Kolthoff I M.A Study of diffusion processes by electrolysis with microelectrodes[J]. J. Am. Chem. Soc., 1939, 61(12): 3344
[39] Yadav A P, Nishikata A, Tsuru T.Oxygen reduction mechanism on corroded zinc[J]. J. Electroanal. Chem., 2005, 585(1): 142
[40] Green E J, Carrit D E.New tables for oxygen saturation of seawater[J]. J. Mar. Res., 1967, 25: 140
[41] Himmelblau D M.Diffusion of dissolved gases in liquids[J]. Chem.Rev., 1964, 64: 527
[42] Ferrel R T, Himmelblau M.Diffusion coefficients of nitrogen and oxygen in water[J]. Chem. Eng. Data, 1967, 12(1): 111
[43] Nishikata A, Ichihara Y, Tsuru T.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J]. Electrochim. Acta, 1996, 41(7/8): 1057
[44] Nishikata A, Ichihara Y, Tsuru T.An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1996, 37(6): 897
[45] Tomashov N D.Passivity and corrosion resistance of metal systems[J]. Corrosion, 1964, 4(1-4): 315
[46] Rozenfeld I L.Atmospheric corrosion of metals [A]. National Association of Corrosion Engineers[C]. Houston, 1972
[47] Zhang X G, Valeriote E M.Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes[J]. Corros. Sci., 1993, 34(12): 1957
[48] Stuve E M. Ionization of water in interfacial electric fields: An electrochemical view [J]. Chem. Phys. Lett., 2012, 519/520: 1
[49] Bard A J, Faulkner L R.Electrochemical Methods Fundamentals and Applications[M]. 2nd Ed., NJ: John Wiley&Sons, 2003
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[5] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[6] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[7] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[8] Xinxin ZHANG,Zhiming GAO,Wenbin HU,Zhipeng WU,Lianheng HAN,Lihua LU,Yan XIU,Dahai XIA. Correlation Between Corrosion Behavior and Image Information of Q235 Steel Beneath Thin Electrolyte Film[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[9] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[10] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[11] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[12] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[13] Ziheng BAI,Yunhua HUANG,Xiaogang LI,Lang YANG,Chaofang DONG,Lidan YAN,Kui XIAO. Environmental Corrosion in Industrial-marine Atmosphere at Qingdao of 7050 Al-alloy Anodized in Boric- and Sulfuric-acid Electrolyte[J]. 中国腐蚀与防护学报, 2016, 36(6): 580-586.
[14] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[15] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
No Suggested Reading articles found!