|
|
Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer |
Qimeng CHEN1,Junxi ZHANG1( ),Xujie YUAN1,2,Nianwei DAI1 |
1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China 2. China Classification Society-Det Norske Veritas Technology Institute, Shanghai 210417, China |
|
|
Abstract Effect of an applied alternating electric field on the oxygen diffusion coefficient in thin electrolyte layers on an electrode of stainless steel was investigated by chronoamperometry. The results show that the oxygen diffusion coefficient increased with the decrease in TEL thickness, as well as the increase in AEF strength. The effect of AEF on the oxygen diffusion coefficient is found to be due to that the migration of oxygen form the gas/liquid interface to electrode surface was accelerated by the applied electric field. For a thinner electrolyte layer by a stronger applied electric field, the cathodic process of the electrode would be more intensive,which corresponds to higher corrosion rate of metal.
|
|
[1] | Nishikata A, Ichihara Y, Hayashi Y, et al.Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron[J]. J. Electrochem. Soc., 1997, 144: 1244 | [2] | Katayama H, Kuroda S.Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn-Al coatings exposed in a coastal area[J]. Corros. Sci., 2013, 76: 35 | [3] | Monnier J, Réguer S, Foy E, et al.XAS and XRD in situ characterisation of reduction and reoxidation processes of iron corrosion products involved in atmospheric corrosion[J]. Corros. Sci., 2014, 78: 293 | [4] | Muster T H, Bradbury A, Trinchi A, et al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochem. Acta, 2011, 56(4): 1866 | [5] | Ligier V, Wéry M, Hihn J Y, et al.Formation of the main atmospheric zinc end products: NaZn4Cl(OH)6SO46H2O, Zn4SO4(OH)6nH2O and Zn4Cl2(OH)4SO45H2O in [Cl-][SO42-][HCO3-][H2O2] electrolytes[J]. Corros. Sci., 1999, 41(6): 1139 | [6] | Barranco V, FeliuJr S, Feliu S. EIS study of the corrosion behaviour of zinc-based coatings on steel in quiescent 3%NaCl solution. Part 1: Directly exposed coatings[J]. Corros. Sci., 2004, 46(9): 2203 | [7] | Prosek T, Thierry D, Taxén C, et al.Effect of cations on corrosion of zinc and carbon steel covered with chloride deposits under atmospheric conditions[J]. Corros. Sci., 2007, 49(6): 2676 | [8] | Lalvani S B, Zhang G.The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I[J]. Corros. Sci., 1995, 37(10): 1567 | [9] | Wendt J L, Chin D T.The a.c. corrosion of stainless steel—II. The breakdown of passivity of SS304 in neutral aqueous solutions[J]. Corros. Sci., 1985, 25(10): 889 | [10] | Zhang J X, Yuan J, Qiao Y N, et al.The corrosion and passivation of SS304 stainless steel under square wave electric field[J]. Mater. Chem. Phys., 2003, 79(1): 43 | [11] | Kim D K, Muralidharan S, Ha T H, et al.Electrochemical studies on the alternating current corrosion of mild steel under cathodic protection condition in marine environments[J]. Electrochem. Acta, 2006, 51(25): 5259 | [12] | Huang H L, Guo X P, Zhang G A, et al.Role of drawing-induced residual stresses and strains in the hydrogen embrittlement susceptibility of prestressing steels[J]. Corros. Sci., 2011, 53(10): 3446 | [13] | Huang H L, Pan Z Q, Guo X P, et al.Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer[J]. Corros. Sci., 2013, 75: 100 | [14] | Yuan X J, Zhang J X, Chen Q M, et al.Corrosion behavior of zinc covered with thin electrolyte layers under external electric field[J]. J. Electrochem., 2013, 19(5): 430 | [14] | (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属锌在薄液膜下的腐蚀电化学研究[J]. 电化学, 2013, 19(5): 430) | [15] | Yuan X J, Zhang J X, Chen Q M, et al.Corrosion science and protection technology, electrochemical process of Zn electrode covered with thinelectrolyte layer under external electric field[J]. Corros. Sci. Prot. Technol., 2014, 26(3): 197 | [15] | (原徐杰, 张俊喜, 陈启萌等. 电场作用下金属Zn在薄液膜下的电极过程研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 197) | [16] | Jiang L L, Wu L K, Hu J M, et al.Electrodeposition of protective organosilane films from a thin layer of precursor solution[J]. Corros. Sci., 2012, 60: 309 | [17] | Stroe van A J, Janssen L J J. Determination of the diffusion coefficient of oxygen in sodium chloride solutions with a transient pulse technique[J]. Anal. Chim. Acta, 1993, 279(2): 213 | [18] | Buffle J, Pelletier M, Monnier D.Chronopotentiometric study of the oxidation of some diluted amalgams in the presence of traces of oxygen dissolved in aqueous solution: Part II: Study of the influence of various parameters on the reaction rate[J]. J. Electroanal. Chem. Interfacial Electrochem., 1973, 43(2): 185 | [19] | Ju L K, Ho C S.The measurement of oxygen diffusion coefficients in polymeric solutions[J]. Chem. Eng. Sci., 1986, 41(3): 579 | [20] | Ho C S, Ju L K.Simultaneous measurement of oxygen diffusion coefficients and solubilities in electrolyte solutions with a polarographic oxygen electrode[J]. Chem. Eng. Sci., 1988, 43(11): 3093 | [21] | Verhallen P T H M, Oomen L J P, Elsen A J J, et al. The diffusion coefficients of helium, hydrogen, oxygen and nitrogen in water determined from the permeability of a stagnant liquid layer in the quasi-s[J]. Chem. Eng. Sci., 1984, 39(11): 1535 | [22] | Castellote M, Alonso C, Andrade C, et al.Oxygen and chloride diffusion in cement pastes as a validation of chloride diffusion coefficients obtained by steady-state migration tests[J]. Cem. Concr. Res., 2001, 31(4): 621 | [23] | Zhang L, Ma C S, Mukerjee S.Oxygen reduction and transport characteristics at a platinum and alternative proton conducting membrane interface[J]. J. Electroanal. Chem., 2004, 568: 273 | [24] | Beattie P D, Basura V I, Holdcroft S.Temperature and pressure dependence of O2 reduction at Pt | Nafion® 117 and Pt | BAM® 407 interfaces[J]. J. Electroanal. Chem., 1999, 468(2): 180 | [25] | Li Q, McAuley C B, Lawrence N S, et al. Anomalous solubility of oxygen in acetonitrile/water mixture containing tetra-n-butylammonium perchlorate supporting electrolyte: The solubility and diffusion coefficient of oxygen in anhydrous acetonitrile and aqueous mixtures[J]. J. Electroanal. Chem., 2013, 688: 328 | [26] | Jiang J H, Rajagopalan K.Oxygen reduction reaction on a mini gas diffusion electrode[J]. Electrochim. Acta, 2011, 58: 717 | [27] | Scharifker B R, Zelenay P, Bockris J O M. The kinetics of oxygen reduction in molten phosphoric acid at high temperatures[J]. J. Electrochem. Soc., 1987, 134: 2714 | [28] | Lee H K, Park J H, Kim D Y, et al.A study on the characteristics of the diffusion layer thickness and porosity of the PEMFC[J]. J. Power Sources, 2004, 131(1/2): 200 | [29] | Tsai C R, Chen F L, Ruo A C, et al.An analytical solution for transport of oxygen in cathode gas diffusion layer of PEMFC[J]. J. Power Sources, 2006, 160(1): 50 | [30] | Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci.,2011, 53(10): 3289 | [31] | Liu W J, Cao F H, Chen A, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour[J]. Corros. Sci., 2010, 52(2): 627 | [32] | Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14 | [33] | Cheng Y L, Zhang Z, Cao F H, et al.A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46(7): 1649 | [34] | Frankel G S, Stratmann M, Rohwerder M, et al.Potential control under thin aqueous layers using a kelvin probe[J]. Corros. Sci., 2007, 49(4) : 2021 | [35] | Zhang S H, Lyon S B.The electrochemistry of iron, zinc and copper in thin layer electrolytes[J]. Corros. Sci., 1993, 35(1-4): 713 | [36] | Tani Y, Nohira T, Enomoto T, et al.Solubility and diffusion coefficient of oxygen in 1-ethyl-1-methylpyrrolidinium fluorohydrogenate room temperature ionic liquid at 298~373 K[J]. Electrochim. Acta, 2011, 56(11): 3852 | [37] | Haibara M, Hashizume S, Munakata H, et al.Solubility and diffusion coefficient of oxygen in protic ionic liquids with different fluoroalkyl chain lengths[J]. Electrochim. Acta, 2014, 132: 208 | [38] | Laitinen H A, Kolthoff I M.A Study of diffusion processes by electrolysis with microelectrodes[J]. J. Am. Chem. Soc., 1939, 61(12): 3344 | [39] | Yadav A P, Nishikata A, Tsuru T.Oxygen reduction mechanism on corroded zinc[J]. J. Electroanal. Chem., 2005, 585(1): 142 | [40] | Green E J, Carrit D E.New tables for oxygen saturation of seawater[J]. J. Mar. Res., 1967, 25: 140 | [41] | Himmelblau D M.Diffusion of dissolved gases in liquids[J]. Chem.Rev., 1964, 64: 527 | [42] | Ferrel R T, Himmelblau M.Diffusion coefficients of nitrogen and oxygen in water[J]. Chem. Eng. Data, 1967, 12(1): 111 | [43] | Nishikata A, Ichihara Y, Tsuru T.Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer[J]. Electrochim. Acta, 1996, 41(7/8): 1057 | [44] | Nishikata A, Ichihara Y, Tsuru T.An application of electrochemical impedance spectroscopy to atmospheric corrosion study[J]. Corros. Sci., 1996, 37(6): 897 | [45] | Tomashov N D.Passivity and corrosion resistance of metal systems[J]. Corrosion, 1964, 4(1-4): 315 | [46] | Rozenfeld I L.Atmospheric corrosion of metals [A]. National Association of Corrosion Engineers[C]. Houston, 1972 | [47] | Zhang X G, Valeriote E M.Galvanic protection of steel and galvanic corrosion of zinc under thin layer electrolytes[J]. Corros. Sci., 1993, 34(12): 1957 | [48] | Stuve E M. Ionization of water in interfacial electric fields: An electrochemical view [J]. Chem. Phys. Lett., 2012, 519/520: 1 | [49] | Bard A J, Faulkner L R.Electrochemical Methods Fundamentals and Applications[M]. 2nd Ed., NJ: John Wiley&Sons, 2003 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|