Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 257-264    DOI: 10.11902/1005.4537.2014.148
Current Issue | Archive | Adv Search |
Cracking Process Analysis of Concrete Cover Caused by Non-uniform Corrosion
Xudong CHENG1(),Lianfang SUN1,Zhifeng CAO1,Xingji ZHU2
1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
2. Department of Civil, Environmental & Architectural Engineering, Korea University, Seoul 136-701, Republic of Korea
Download:  HTML  PDF(5369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A model was proposed to describe the swell-cracking of concrete induced by non-uniform rusting of re-bar versus time by consideration of regulations of the re-bar rusting process and the non-uniform distribution of the rust products on the re-bar. Then the distribution of displacement of the non-uniform rust-swelling of concrete at different moment could be deduced through the proposed model by using time discrete method. Thereafter, from the rust-swelling displacement, the ABAQUS swelling finite element model could deduce the overall cracking process. By comparison between the two overall swell-cracking processes induced by uniform and non-uniform rust induced swellings respectively, it follows that there exists large difference between the two cracking processes, while a prediction of much higher crack propagation rate by the later one is fairly well agree with the situation of engineering practice. Therefore, the model of non-uniform rust-swelling of concrete induced by non-uniform rusting of re-bar shows good prospect to be adopted in the study of corrosion behavior of steel re-bar reinforced concrete.

Key words:  swell-cracking of concrete      corrosion product      non-uniform distribution      rust-swelling displacement      time discretization      extended finite element     

Cite this article: 

Xudong CHENG,Lianfang SUN,Zhifeng CAO,Xingji ZHU. Cracking Process Analysis of Concrete Cover Caused by Non-uniform Corrosion. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 257-264.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.148     OR     https://www.jcscp.org/EN/Y2015/V35/I3/257

Fig.1  Oval rust expansion displacement theoretical model
Fig.2  Rust expansion displacement relationship diagram
Fig.3  Cross-sectional geometry of reinforced concrete beam (the unit: mm)
Parameter Value Parameter Value
Elastic modulus of concrete Ec / Pa 3.25×1010 Environment temperature Tc / ℃ 5
Poisson’s ratio of concrete νc 0.20 Environment relative humidity Hw 0.9(0.75)
Elastic modulus of corrosion products Er / Pa 100×106 Water content of concrete PS / % 35
Poisson’s ratio of corrosion products νr 0.49 Chloride content k C l - / % 0.2
Density of steel ρs / kgm-3 7800 Fracture energy G / Jm-2 140
Water-cement ratio W/C 0.35 Maximum principal stress σmax / Nm-2 1.71×106
Table1  Material parameters summary
Fig.4  Distributions of concrete radial displacement uc(θ) before (a) and after (b) cracks penetration when Hw=0.9
Fig.5  Distributions of concrete radial displacement uc(θ) before (a) and after (b) cracks penetration when Hw=0.75
Fig.6  Concrete cover cracking process when t=19 d (a), 37 d (b), 152 d (c) and 642 d (d) under non-uniform distribution of corrosion products
Fig.7  Concrete cover cracking process when t=77 d (a), 172 d (b), 286 d (c) and 558 d (d) under uniform distribution of corrosion products
[1] Oh B H, Kim K H, Jang B S. Critical corrosion amounts to cause cracking of reinforced concrete structures[J]. ACI Mater. J., 2009, 106(4): 333
[2] Wu Q, Yuan Y S, Zhang F J. Review of the research on structure behavior's deterioration based on corroded reinforced concrete (I)[J]. Sichuan Build. Sci., 2007, 33(6): 9 (吴庆, 袁迎曙, 张风杰. 基于钢筋锈蚀的混凝土结构性能退化研究综述(I)[J]. 四川建筑科学研究, 2007, 33(6): 9)
[3] Zhang X G, Xing F, Li D W, et al. Summary on corrosion- induced cracking of reinforced concrete and its reverse effect on corrosion under aggressive environments[J]. Concrete, 2010, (3): 39 (张小刚, 邢峰, 李大望等. 钢筋混凝土锈胀开裂及对腐蚀反作用影响研究[J]. 混凝土, 2010, (3): 39)
[4] Bazant Z P. Physical model for steel corrosion in sea concrete structures applications[J]. J. Struct. Div., 1979, 105(6): 1155
[5] Guzman S, Galvez J C, Sancho J M. Cover cracking of reinforced concrete due to rebar corrosion induced by chloride penetration[J]. Cem. Concr. Res., 2011, 41(8): 893
[6] Maaddawy T E, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking[J]. Cem. Concr. Compos., 2007, 29(3): 168
[7] Lu C, Jin W, Liu R. Reinforcement corrosion-induced cover cracking and its time prediction for reinforced concrete structures[J]. Corros. Sci., 2011, 53: 1337
[8] Zhao Y X, Hu B Y, Yu J, et al. Non-uniform distribution of rust layer around steel bar in concrete[J]. Corros. Sci., 2011, 53(12): 4300
[9] Yuan Y S, Ji Y S, Mu Y J. Propagation and model of distribution for corrosion of steel bars in concrete[J]. China Civil Eng. J., 2007, 40(7): 5 (袁迎曙, 姬永生, 牟艳君. 混凝土内钢筋锈蚀层发展和锈蚀量分布模型研究[J]. 土木工程学报, 2007, 40(7): 5)
[10] Geng O. Reinforcement Corrosion and Degradation Rate of Concrete Members [M]. Beijing: China Railway Publishing House, 2010: 65 (耿欧. 混凝土结构的钢筋锈蚀与退化速率[M]. 北京: 中国铁道出版社, 2010: 65)
[11] Zhao Y X, Yu J, Jin W L. Damage analysis and cracking model of reinforced concrete structures with rebar corrosion[J]. Corros. Sci.2011, 53(10): 3388
null
[12] Keivan K, Hossein M S. Prediction of the penetrated rust into the microcracks of concrete caused by reinforcement corrosion[J]. Appl. Math. Model., 2011, 35: 2529
[13] Leon C, Dimitri V V. Prediction of corrosion-induced cover cracking in reinforced concrete structures[J]. Constr. Build. Mater., 2011, 25(4): 1854
[14] Wu Q. Reinforced concrete members performance degradation prediction model based on reinforcement corrosion [D]. Xuzhou: China University of Mining and Technology, 2008 (吴庆. 基于钢筋锈蚀的混凝土结构性能退化预计模型[D]. 徐州: 中国矿业大学, 2008)
[15] Zhao Y X, Karimi A R, Hong S W, et al. Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer[J]. Corros. Sci., 2011, 53(9): 2803
[16] Zhao Y X, Jin W L. Analysis on the cracking of concrete cover due to rebar corrosion[J]. J. Hydraul. Eng., 2005, 36(8): 939 (赵羽习, 金伟良. 钢筋锈蚀导致混凝土结构保护层胀裂的全过程分析[J]. 水利学报, 2005, 36(8): 939)
[17] Geng O. Prediction models of steel bar corrosion rate in concrete member [D]. Xuzhou: China University of Mining and Technology, 2008 (耿欧. 混凝土结构中钢筋锈蚀速率预计模型研究 [D]. 徐州: 中国矿业大学, 2008)
[18] Wei B M. Metallic Corrosion Theories and Applications[M]. Beijing: Chemical Industry Press, 1984 (魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984)
[19] Liang C H. The Introduction of Metal Corrosion[M]. Beijing: China Machine Press, 1999 (梁成浩. 金属腐蚀学导论[M]. 北京: 机械工业出版社, 1999)
[20] Mu Y J. Reinforcement corrosion dilation effect and forecasting model in concrete [D]. Xuzhou: China University of Mining and Technology, 2006 (牟艳君. 混凝土内钢筋锈胀效应和预测模型研究 [D]. 徐州: 中国矿业大学, 2006)
[21] Song X B, Liu X L. Experiment research on corrosion of reinforcement in concrete through cathode-to-anode area ratio[J]. ACI Mater. J., 2000, 97(2): 148
[22] Song X B. Corrosion of steel in concrete [D]. Beijing: Tsinghua University, 1999 (宋小冰. 混凝土中钢筋的腐蚀 [D]. 北京: 清华大学, 1999)
[23] Ji Y S. Correlation of reinforced concrete degradation processes in natural and artificial climate environment [D]. Xuzhou: China University of Mining and Technology, 2007 (姬永生. 自然与人工气候环境下钢筋混凝土退化过程的相关性研究 [D]. 徐州: 中国矿业大学, 2007)
[24] Kapilesh B, Ghosh A K, Yasuhiro M, et al. Modeling of time to corrosion-induced cover cracking in reinforced concrete structures[J]. Cem. Concr. Res., 2005, 35: 2203
[1] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[2] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[4] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[5] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[6] Mingyu BAO, Chengqiang REN, Jingsi HU, Bo LIU, Jiameng LI, Feng WANG, Li LIU, Xiaoyang GUO. Stress Induced Corrosion Electrochemical Behavior of Steels for Oil and Gas Pipes[J]. 中国腐蚀与防护学报, 2017, 37(6): 504-512.
[7] Xin ZHANG,Nianwei DAI,Yan YANG,Junxi ZHANG. Effect of Direct Current Electric Field on Corrosion Mechanism of Zn Exposed to Simulated Industrial Environment[J]. 中国腐蚀与防护学报, 2017, 37(5): 451-459.
[8] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[9] Fu DONG,Yulong HU,Xin ZHAO,Zhiqiao WANG. Effect of Hydrostatic Pressure on Corrosion Behavior of 10CrNi3MoV Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[10] Qian HU,Jing LIU,Yukun WANG,Feng HUANG,Mingjie DAI,Yanglai HOU. Corrosion Performance of Different Zones for Weld Joint of A710 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(6): 611-616.
[11] Qiang BAI,Yan ZOU,Xiangfeng KONG,Yang GAO,Yan LIU,Sheng DONG. Electrochemical Corrosion Behavior in Seawater of Weld Joints of CCSE40 Steel Prepared by Underwater WetWelding with Austenitic Welding Rod[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[12] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[13] Dongfang JIANG,Yang BAI,Zhongliang ZHU,Naiqiang ZHANG,Zhuonan XIAO,Hong XU. Moving Process of Corrosion Products in Steam-water System of Supercritical Power Units[J]. 中国腐蚀与防护学报, 2016, 36(4): 343-348.
[14] Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China[J]. 中国腐蚀与防护学报, 2016, 36(1): 47-51.
[15] Yangyang DONG, Feng HUANG, Pan CHENG, Qian HU, Jing LIU. Evolution of Corrosion Product Scales on an Acid Proof Pipeline Steel X65 MS in H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(5): 386-392.
No Suggested Reading articles found!