Please wait a minute...
J Chin Soc Corr Pro  2004, Vol. 24 Issue (5): 293-296     DOI:
Research Report Current Issue | Archive | Adv Search |
An Investigation on Mechanical Behaviors of pipeline Steel X70 After Electrochemical hydrogen Charging
Ying Zhao
西安石油学院机电与材料工程学院
Download:  PDF(173KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Tensile tests and slow srain rate tests(SSRT) are used to investigate the mechanical behaviors of X70 pipeline steel after electrochemical hydroge charging.The experimental results show that hydrogen charging has little influence on the tensile strength of X70steel and decreases the plasticity of X70steel, thereby the fracture ductility and the fracture strength reduce considerably. After static electrochemical charging with hydrogen, the plastic properties successively decrease with the increase of pre-charging time. At the slow strain rate tension(SSRT) condition, dynamic electrochemical charging with hydrogen decreases the plasticity of X70 pipeline steel considerably. Analysis on the fracture morphology by SEM indicates that the fractograph exhibits typical ductile dimple fracture pattern after static electroxhemical charging, and the diameter of dimple becomes smaller compared to the uncharging specimen. The fractograph of dynamic electrochemical charging during the SSRT displays with a quasi-cleavage mode.
Key words:  electrochemical hydrogen charging      tensile plasticity      tensile strength      pipeline steel      
Received:  05 April 2003     
ZTFLH:  TG113.2  
Corresponding Authors:  Ying Zhao   

Cite this article: 

Ying Zhao. An Investigation on Mechanical Behaviors of pipeline Steel X70 After Electrochemical hydrogen Charging. J Chin Soc Corr Pro, 2004, 24(5): 293-296 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2004/V24/I5/293

[1]DelafosseD ,MagninT .Hydrogeninducedplasticityinstresscorrosioncrackingofengineeringsystems[J].Eng.Fract.Mech.,2001,68(6):693-729
[2]YuGH ,ChengYH ,ChenHX .Hydrogen-inducedfailureofoil-welltubularsteelC90[J].ActaMetall.Sin.,1996,32(6):617-623(于广华,程以环,陈红星.C90油管钢的氢损伤[J].金属学报,1996,32(6):617-623)
[3]FangBY ,WangJQ ,ZhuZY .Thestresscorrosioncrackingofburiedpipelinesinnear-neutral-pHandhighpHsolutions[J].ActaMetall.Sin.,2001,37(5):453-458(方丙炎,王俭秋,朱自勇.埋地管道在近中性 pH和高pH环境中的应力腐蚀开裂[J].金属学报,2001,37(5):453-458)
[4]HarleBA ,BeaversJA .Low-pHstresscorrosioncrackpropaga tioninAPIX -65pipelinesteel[J].Corrosion,1993,49:861-863
[5]ZhengXL .TheMechanicalPropertiesofMaterials(2ndedition)[M ].Xi’an:NorthwesternPolytechnicalUniversityPress,2000(郑修麟.材料的力学性能(第二版)[M ].西安:西北工业大学出版社,2000)
[6]HirthJP .Effectofhydrogenonthepropertiesofironandsteel[J].Metall.Trans.A .,1980,11A :861-890
[7]ZhengXL .Onaunitedmodelforpredictingnotchstrengthandfracturetoughness[J].Eng.Fract.Mech.,1989,33(5):685-695
[8]WangYB ,WangS ,YanLW .Theeffectsofplasticdeformationonhydrogeninducedcracking[J].J.Chin.Soc.Corros.Prot.,2000,20(4):248-252(王燕斌,王胜,颜练武.塑性变形在氢致断裂中的作用[J].中国腐蚀与防护学报,2000,20(4):248-252)
[9]ZhangT ,YaoY ,ChuWY .Relationshipbetweenhydrogen-in ducedadditivestressandthresholdcrackingstressforapipelinesteel[J].ActaMetall.Sin.,2002,38(8):844-848(张涛,姚远,褚武扬.管线钢氢致附加应力与氢致门槛应力的相关性[J].金属学报,2002,38(8):844-848)
[10]ChuWY ,QiaoLJ ,ChenQZ .FractureandEnvironmentalFrac ture[M].Beijing:SciencePress,2000(褚武扬,乔利杰,陈奇志.断裂与环境断裂[M ].北京:科学出版社,2000)
[11]HenryG ,HorstmannD .MacrofractographyandMicrofractography[M].Beijing:MechanicalIndustryPress,1990(G .亨利,D .豪斯特曼.宏观断口学及显微断口学[M ].北京:机械工业出版社,1990)
[12]MaierHJ ,PoppW ,KaescheH .Effectofhydrogenonductilefractureofaspheroidizedlowalloysteel[J].Mater.Sci.Eng.,1995,A191:17-26
[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[7] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[8] Xianbo SHI,Chunguang YANG,Wei YAN,Dake XU,Maocheng YAN,Yiyin SHAN,Ke YANG. Microbiologically Influenced Corrosion of Pipeline Steels[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[10] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[11] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[12] Jidong REN,Rongjie GAO,Yu ZHANG,Yong LIU,Tian DING. Fabrication of Amphiphobic Surface of Pipeline Steel by Acid Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2017, 37(3): 233-240.
[13] Kangnan ZHANG,Ming WU,Fei XIE,Dan WANG,Yuxi SAN,Feng JIANG. Effect of Magnetic Field on Corrosion of X80 Pipeline Steel in Meadow Soil at Shenyang Area[J]. 中国腐蚀与防护学报, 2017, 37(2): 148-154.
[14] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
No Suggested Reading articles found!