Please wait a minute...
J Chin Soc Corr Pro  1996, Vol. 16 Issue (3): 206-210    DOI:
Current Issue | Archive | Adv Search |
STRESS CORROSION CRACKING BEHAVIOR OF SiC_p/2024 METAL MATRIX COMPOSITE
YAO Hongyu (Department of Surfane Science and Corrosion Engineering;University of Science and Technology; Beijing )HUA Yingchun; SONG Yujiu (Xi'an Highway Traffic University ) (Xi'an Jiaotong University )TU Mingjing (Sichuan United University)
Download:  PDF(1742KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By kinetic tests with double cantilever beam (DCB) specimens and slow strain rate tension (SSRT)tests,the stress corrosion cracking (SCC) behavior of SiC. (10pm,15 vo1%)/2024 aluminium mains composite in NaCl solution was investigated. The effect of particulate reinforcement on SCC behavior of this material was discussed. SCC did not occur in both tests in the open circuit condition. However, SCC was observed in the SSRT test under small anodic polarization. Introduction of the particulate reinforcement did not alter the SCC mechanism of intergranular anodic dissolution. The composite exhibited significantly higher SCC resistance than the similarly produced 2024 aluminium alloy. This could be attributed to: 1)the finer grains of matrix of the composite; 2) the strain concentration effect in the mains adjacent to SiC particulates; 3) the hindering effect of the particulates located at the grain boundaries from growing of the intergranular SCC crack.
Key words:  Metal matrix composite      Stress corrosion cracking      Aluminium alloy     
Received:  25 June 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

YAO Hongyu (Department of Surfane Science and Corrosion Engineering;University of Science and Technology; Beijing )HUA Yingchun; SONG Yujiu (Xi'an Highway Traffic University ) (Xi'an Jiaotong University )TU Mingjing (Sichuan United University). STRESS CORROSION CRACKING BEHAVIOR OF SiC_p/2024 METAL MATRIX COMPOSITE. J Chin Soc Corr Pro, 1996, 16(3): 206-210.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1996/V16/I3/206

1曹利,李光福,姚忠凯.中国腐蚀与防护学报,1990,10(3):2662清水义明,西村俊弥,田村学.材料与环境,1991,40(6):4063 徐福源.金属材料应力腐蚀开裂测试方法及其数据汇编,北京航空材料研究所,1984,p.124HolroydNJH,SeamansGM.In:DeanSW,PughEN,UgianskyGM.ed.Environment-SensitiveFracture:EvaluationandComparisonofTestMethods,ASTMSTP821;Philadelphia:ASTM;1984,p.2025姚红宇,涂铭旌,马宗跃等.中国复合材料学报,1996;13(2),将发表6BurleignhTD.COrrosion,1991,47(2):897ThompsonAW,BernsteinIM.In:FontanaMG,StaehleRW.ed.AdvancesinCorrosionScienceandTechnology,V7;NewYork:Plenum;1980;p.538ArsenaultRJ,ShiN,FengCRetal.MaterialsScienceandEngineering,1991,A131:55
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[4] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[5] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[6] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[7] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[8] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[9] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[10] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[11] Yongqi TAO,Gang LIU,Yesheng LI,Zhixiang ZENG. Corrosion Wear Properties of 2024 Al-Alloy in Artificial Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.
[12] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[13] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[14] Jingli HAO,Yongjing GAO,Zehua DONG. Effects of Siloxane Sulfide and Cerium Salt Complex Conversion Film on Corrosion Resistance of Aluminum Alloy[J]. 中国腐蚀与防护学报, 2015, 35(6): 525-534.
[15] Zhiming ZHANG,Qingjiao PENG,Jianqiu WANG,En-Hou HAN,Wei KE. Stress Corrosion Cracking Behavior of Forged 316L Stainless Steel Used for Nuclear Power Plants in Alkaline Solution at 330 ℃[J]. 中国腐蚀与防护学报, 2015, 35(3): 205-212.
No Suggested Reading articles found!