Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 291-298    DOI: 10.11902/1005.4537.2025.088
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Performance of Cold Sprayed TC4-WC Coatings
YU Baoyi(), MEI Tong, ZHENG Li, CHANG Dongxu, JI Meilin
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

YU Baoyi, MEI Tong, ZHENG Li, CHANG Dongxu, JI Meilin. Microstructure and Corrosion Performance of Cold Sprayed TC4-WC Coatings. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 291-298.

Download:  HTML  PDF(18035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cold-sprayed TC4 coating exhibits high porosity, leading to poor corrosion resistance. To enhance the corrosion resistance, this study introduced WC particles with varying volume fractions (15%-30%, volume fraction) into TC4 powder, so that the influence of WC content on the microstructure and corrosion performance of the cold-sprayed TC4-WC coatings on carbon steel Q235 in artificial seawater was investigated by scanning electron microscope, electrochemical measurement and salt spray corrosion tests. The results indicate that the mechanical interlocking effect of WC particles can effectively reduce the coating porosity. When the WC content reaches 25%, the porosity of the composite coating decreases significantly from 10.573% (plain TC4 coating) to 0.464%, demonstrating superior corrosion resistance. Electrochemical tests in 3.5%NaCl solution reveal that the optimal composite coating (TC4-25%WC) exhibits a corrosion current density of three orders of magnitude lower than that of the substrate. Electrochemical and salt spray corrosion tests show that WC particles promote the formation of a dense TC4 matrix through plastic deformation effects, thereby effectively blocks the penetration pathways of corrosive media. Corrosion mechanism analysis confirms that the failure of the plain TC4 coating originates from crevice corrosion induced by pores, whereas the incorporation of WC significantly inhibits the penetration of corrosive media toward the coating/substrate interface. This study provides a meaningful reference for the development of high-performance Ti-based composite protective coatings.

Key words:  TC4-WC coatings      cold spray      potentiodynamic polarization      salt spray corrosion     
Received:  14 March 2025      32134.14.1005.4537.2025.088
ZTFLH:  TG174  
Fund: Liaoning Province Science and Technology Joint Program Project(2024-BSLH-168)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.088     OR     https://www.jcscp.org/EN/Y2026/V46/I1/291

Fig.1  Micro-morphologies of TC4 powders (a) and WC powders (b)
Fig.2  Surface morphology of as-prepared TC4-WC composite coating (a) and EDS analysis result of the marked point in Fig.2a (b)
Fig.3  Micro-morphologies of TC4-WC composite coatings containing 0 (a), 15% (b), 20% (c), 25% (d) and 30% (e) contents of WC
Fig.4  Deposition mechanism of cold-sprayed TC4-WC coating
Fig.5  Potentiodynamic polarization curves of Q235 substrate and TC4-WC coatings with different volume fractions of WC in 3.5%NaCl aqueous solution
SampleCorrosion potential / VCorrosion current density / A·cm-2
Q235-1.022.11 × 10-3
TC4-0.597.6 × 10-4
TC4-15%WC-0.515.1936 × 10-5
TC4-20%WC-0.4641.2113 × 10-5
TC4-25%WC-0.4027.824 × 10-6
TC4-30%WC-0.4489.98 × 10-6
Table 1  Fitting results of potentiodynamic polarization curves of Q235 substrate and TC4-WC coatings with different volume fractions of WC
Fig.6  Surface morphologies and corresponding element mappings of TC4 (a) and TC4-25%WC (b) coatings after electrochemical test
Fig.7  Corrosion mechanism of TC4 coating
Fig.8  Macroscopic images of Q235 steel and TC4-xWC (x = 0, 15%, 20%, 25%, 30%) coatings before (a) and after (b) salt spray corrosion
Fig.9  Surface morphologies and element mappings of TC4 coating (a) and TC4-25%WC coating (b) after salt spray corrosion
[1] Zhou J L, Li X G, Cheng X Q, et al. Research progress on corrosion of metallic materials in deep sea environment [J]. Corros. Sci. Prot. Technol., 2010, 22: 47
周建龙, 李晓刚, 程学群 等. 深海环境下金属及合金材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 47
[2] Qian J, Wang Y, Li Y. The application of titanium and titanium alloys on foreign vessls [J]. Ship Sci. Technol., 2016, 38(6): 1
钱 江, 王 怡, 李 瑶. 钛及钛合金在国外舰船上的应用 [J]. 舰船科学技术, 2016, 38(6): 1
[3] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, 213A: 103
[4] Zhou W M. Review on research progress of marine titanium alloy equipment materials and preparation technologiesy [J]. Chem. Enterp. Manage., 2017, (21): 92
周文萌. 船用钛合金装备材料及制备技术研究进展评述 [J]. 化工管理, 2017, (21): 92
[5] Yamaguchi T, Hagino H, Michiyama Y, et al. Sliding wear properties of Ti/TiC surface composite layer formed by laser alloying [J]. Mater. Trans., 2015, 56: 361
doi: 10.2320/matertrans.M2014330
[6] Wang C, Li J J, Wang T, et al. Microstructure and properties of pure titanium coating on Ti-6Al-4V alloy by laser cladding [J]. Surf. Coat. Technol., 2021, 416: 127137
doi: 10.1016/j.surfcoat.2021.127137
[7] Dai J J, Zhang F Y, Wang A M, et al. Microstructure and properties of Ti-Al coating and Ti-Al-Si system coatings on Ti-6Al-4V fabricated by laser surface alloying [J]. Surf. Coat. Technol., 2017, 309: 805
doi: 10.1016/j.surfcoat.2016.10.082
[8] Yao H L, Zou Y L, Bai X B, et al. Microstructures, mechanical properties and electrochemical behaviors of nano-structured HA/Ti composite coatings deposited by high-velocity suspension flame spray (HVSFS) [J]. Ceram. Int., 2018, 44: 13024
doi: 10.1016/j.ceramint.2018.04.121
[9] Toma D, Brandl W, Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings [J]. Surf. Coat. Technol., 2001, 138: 149
doi: 10.1016/S0257-8972(00)01141-5
[10] Li W Y, Li C J. Characteristics of cold spray process [J]. China Surf. Eng., 2002, 15(1): 12
李文亚, 李长久. 冷喷涂特性[J]. 中国表面工程, 2002, 15(1): 12
[11] Zheng L, Wang M T, Yu B Y. Research progress of cold spraying coating technology for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 22
郑 黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 22
[12] Assadi H, Kreye H, Gärtner F, et al. Cold spraying-a materials perspective [J]. Acta Mater., 2016, 116: 382
doi: 10.1016/j.actamat.2016.06.034
[13] Gärtner F, Schmidt T, Stoltenhoff T, et al. Recent developments and potential applications of cold spraying [J]. Adv. Eng. Mater., 2006, 8: 611
doi: 10.1002/adem.v8:7
[14] Li W Y, Assadi H, Gäertner F, et al. A review of advanced composite and nanostructured coatings by solid-state cold spraying process [J]. Crit. Rev. Solid State Mater. Sci., 2019, 44: 109
doi: 10.1080/10408436.2017.1410778
[15] Vo P, Goldbaum D, Wong W, et al. Cold-spray processing of titanium and titanium alloys [A]. QianM, FroesFH. Titanium Powder Metallurgy [M]. Amsterdam: Elsevier, 2015: 405
[16] Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review [J]. Prog. Mater. Sci., 2020, 110: 100633
doi: 10.1016/j.pmatsci.2019.100633
[17] Hussain T, McCartney D G, Shipway P H, et al. Corrosion behavior of cold sprayed titanium coatings and free standing deposits [J]. J. Therm. Spray Technol., 2011, 20: 260
doi: 10.1007/s11666-010-9540-x
[18] Wang Y L, Monetta T. Systematic study of preparation technology, microstructure characteristics and mechanical behaviors for SiC particle-reinforced metal matrix composites [J]. J. Mater. Res. Technol., 2023, 25: 7470
doi: 10.1016/j.jmrt.2023.07.145
[19] Munagala V N V, Chromik R R. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites [J]. Surf. Coat. Technol., 2021, 411: 126974
doi: 10.1016/j.surfcoat.2021.126974
[20] Alidokht S A, Manimunda P, Vo P, et al. Cold spray deposition of a Ni-WC composite coating and its dry sliding wear behavior [J]. Surf. Coat. Technol., 2016, 308: 424
doi: 10.1016/j.surfcoat.2016.09.089
[21] Sathish S, Geetha M. Comparative study on corrosion behavior of plasma sprayed Al2O3, ZrO2, Al2O3/ZrO2 and ZrO2/Al2O3 coatings [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1336
doi: 10.1016/S1003-6326(16)64236-X
[22] Lee Y T R, Ashrafizadeh H, Fisher G, et al. Effect of type of reinforcing particles on the deposition efficiency and wear resistance of low-pressure cold-sprayed metal matrix composite coatings [J]. Surf. Coat. Technol., 2017, 324: 190
doi: 10.1016/j.surfcoat.2017.05.057
[23] Xu Y X, Ge J J, Li W Y. Microstructure and tribological properties of cold sprayed WCp/Ti composite coatings on Ti6Al4V titanium alloy [J]. Tribol. Int., 2024, 192: 109218
doi: 10.1016/j.triboint.2023.109218
[24] Wang J F, Zhang M, Dai R S, et al. Wear and electrochemical corrosion behaviors of Cu matrix WC-Co reinforced composite coating prepared by cold spray [J]. Surf. Coat. Technol., 2024, 488: 131001
doi: 10.1016/j.surfcoat.2024.131001
[25] Li X D, Liu C H, Zhang C, et al. Electrodeposition and performance of WC-Zn composite coatings on Q235 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 795
李祥东, 刘昌昊, 张 弛 等. WC-Zn复合镀层的工艺设计及其性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 795
doi: 10.11902/1005.4537.2024.131
[26] Zhao M Q, He Y Y. Metal Corrosion and Protection [M]. Beijing: National Defense Industry Press, 2019: 142
赵麦群, 何毓阳. 金属腐蚀与防护 [M]. 北京: 国防工业出版社, 2019: 142
[1] GU Songlun, ZHANG Fan, HUANG Guosheng, JIANG Dan, DONG Guojun. Corrosion Behavior of Cold Spray Cu-Ti Pseudo Alloy as Anti-fouling Material in Natural Seawater[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[2] HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[3] CHEN Siyu, WANG Jingyu, GAO Liqiang. Corrosion Behavior in Neutral Salt Spray Environment of High Strength Zn-Al Alloy Coated Steel Wire for Bridge Cables[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[4] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[5] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[6] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[7] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[8] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[9] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[11] Zhiying ZHANG, Jianan TANG, Jie YU, Xudong WANG, Luochao HUANG, Junwen ZHOU, Hao TANG, Jikang ZHANG, Yatao CHEN, Dongpeng CHENG. Corrosion Behavior of Cu-based Metallic Glass Composites in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(5): 478-486.
[12] Fengxuan SONG,Qizhong ZHAO,Feilong LI,Yuelu REN,Kui HUANG,Xinming ZHANG. Effect of Aging Treatment on Corrosion Rate of 7050 Al-alloy Plate[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[13] Jiali SUI,Xiangbo LI,Zhifeng LIN,Tianrong ZHAN. Corrosion Resistance of Two Thermal Sprayed Zn-Al Alloy Coatings in Seawater at Low Temperatures[J]. 中国腐蚀与防护学报, 2016, 36(5): 471-475.
[14] YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[15] WANG Yingfa,HUANG Guosheng,CHENG Xudong,LI Xiangbo,XING Lukuo,GUO Juan,MA Yan. Research of Corrosion Behavior of Thermal Spraying Zn-Ni Composite Coating in Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
No Suggested Reading articles found!