Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1233-1243    DOI: 10.11902/1005.4537.2024.412
Current Issue | Archive | Adv Search |
Corrosion Behavior of Atmospheric Plasma Spray Thermal Barrier Coatings at 900 °C Beneath NaCl Deposits in Oxygen Flow Carrying Water Vapor
LI Yanyan1, LI Shuai2(), DONG Chao1, LI Dongqiang1, BAO Zebin2, ZHU Shenglong2
1 National Key Laboratory of Marine Engine Science and Technology, AECC Shenyang Engine Research Institute, Shenyang 110015, China
2 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Yanyan, LI Shuai, DONG Chao, LI Dongqiang, BAO Zebin, ZHU Shenglong. Corrosion Behavior of Atmospheric Plasma Spray Thermal Barrier Coatings at 900 °C Beneath NaCl Deposits in Oxygen Flow Carrying Water Vapor. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1233-1243.

Download:  HTML  PDF(11349KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ceramic top coatings of 8%Y2O3-stabilized ZrO2 (YSZ) were deposited on the surface of NiCoCrAlY bond coat on DZ411 Ni-based high temperature alloy via high-velocity oxygen fuel (HVOF) spraying with tow type of spraying processes, namely Metco 9M and Praxair 7700 spraying techniques, respectively. The corrosion behavior of the two YSZ thermal barrier coatings was evaluated beneath NaCl deposits in oxygen flow carrying water vapor at 900 ℃. As indicated by the results, the air plasma spraying process can optimize the microstructure of the YSZ ceramic top coat through a judicious adjustment of the plasma gas flow rate and spraying current, resulting in a uniformly dense and less porous structure. Due to its dense microstructure and low porosity, the compact YSZ ceramic top coat is capable of hindering the inward migration of chlorine and oxygen to a certain extent, thereby suppressing the oxidation rate of the NiCoCrAlY bond coating. It follows that, the YSZ thermal barrier coating prepared by the Praxair 7700 spraying process exhibited excellent thermal stability and corrosion resistance.

Key words:  surface and interface in materials      high temperature corrosion      thermal barrier coatings      simulated marine environment     
Received:  26 December 2024      32134.14.1005.4537.2024.412
ZTFLH:  TG174.2  
Fund: National Natural Science Foundation of China(52301116);China Postdoctoral Science Foundation(2023M743572);National Key Laboratory of Marine Engine Science and Technology Foundation
Corresponding Authors:  LI Shuai, E-mail: sli17s@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.412     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1233

ElementCoCrAlTaTiYWMoCBNi
DZ4119.1413.62.972.874.90-3.441.600.090.01Bal
NiCoCrAlY23208.54-0.5----Bal
Table 1  Nominal chemical compositions of DZ411 Ni-based superalloy and NiCoCrAlY powders (mass fraction / %)
Fig.1  Schematic diagram of the high-temperature corrosion testing system
Fig.2  Surface morphologies of the YSZ top coatings deposited by Metco 9M (a, b) and Praxair 7700 (c, d)
Fig.3  Cross-sectional morphologies of TBCs with YSZ top coatings deposited by Metco 9M (a, b) and Praxair 7700 (c, d)
Fig.4  XRD patterns (a) and partially enlarged view (b) of the YSZ top coatings deposited by Metco 9M and Praxair 7700
Fig.5  XRD patterns of TBCs with the YSZ top coatings deposited by Metco 9M (a) and Praxair 7700 (b) after corrosion for 100 and 200 h in the composite environment of water vapor and NaCl at 900 ℃
Fig.6  Cross-sectional morphologies of TBC with the YSZ top coating deposited by Metco 9M after corrosion for 100 h (a, b) and 200 h (c, d)
Fig.7  Cross-sectional morphologies of TBC with the YSZ top coating deposited by Praxair 7700 after corrosion for 100 h (a, b) and 200 h (c, d)
Fig.8  Cross-sectional morphologies of TBC with the YSZ top coating deposited by Metco 9M after corrosion for 300 h (a, b), and EDS elemental mappings in Fig.8b (c-i)
ZoneOAlCrCoNiTiYTaCl
1#65.834.00.1-----0.1
2#67.629.20.7---2.4-0.1
3#66.424.71.10.71.16.0---
4#-5.614.316.348.85.2-9.8-
5#-2.927.224.841.91.00.41.8-
6#67.032.00.30.20.3---0.2
7#73.58.510.94.82.3----
8#-17.522.220.835.7--3.8-
9#-12.028.625.133.6--0.7-
Table 2  EDS results of the marked areas in Fig.8 and Fig.9 (atomic fraction / %)
Fig.9  Cross-sectional morphologies of TBC with the YSZ top coating deposited by Praxair 7700 after corrosion for 300 h (a, b), and EDS elemental mappings in Fig.9b (c-i)
[1] Hamed A, Tabakoff W C, Wenglarz R V. Erosion and deposition in turbomachinery [J]. J. Propul. Power, 2006, 22: 350
[2] Wang W Q, Cui Y, Xue Y P, et al. Corrosion behavior of GH4169 alloy under flexural tensile stress and beneath a NaCl deposit film in water vapor containing air at 600 ℃ [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1399
王文泉, 崔 宇, 薛蕴鹏 等. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1399
doi: 10.11902/1005.4537.2024.002
[3] Lyu X M, Wang Z Y, Han E-H. Preparation and corrosion resistance of nano-ZrO2 modified epoxy thermal insulation coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1234
吕晓明, 王震宇, 韩恩厚. 纳米改性环氧隔热涂层的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1234
doi: 10.11902/1005.4537.2023.340
[4] Feng S Y, Zhou Z H, Yang L L, et al. Electrochemical and wear behavior of TC4 alloy in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1243
冯少宇, 周兆辉, 杨兰兰 等. 海洋环境下TC4合金的电化学及磨损行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1243
doi: 10.11902/1005.4537.2023.390
[5] Liu Y B, Liu J H, Yu Y H, et al. Review of hot corrosion of thermal barrier coatings of gas turbine [J]. Chin. J. Ship Res., 2017, 12(2): 107
刘永葆, 刘建华, 余又红 等. 燃气轮机热障涂层高温腐蚀研究综述 [J]. 中国舰船研究, 2017, 12(2): 107
[6] Chen Z, Jin G, Cui X F, et al. Research progress on marine adaptability of ceramic based materials for thermal barrier coating of marine gas turbine [J]. Aeronaut. Manuf. Technol., 2021, 64(13): 45
陈 卓, 金 国, 崔秀芳 等. 耐海洋环境腐蚀燃机热障涂层材料研究进展 [J]. 航空制造技术, 2021, 64(13): 45
[7] Wang K, Zou L X, Guo L, et al. High-temperature corrosion and protection of thermal barrier coatings for aeroengines and gas turbines [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1
王 昆, 邹兰欣, 郭 磊 等. 航空发动机及燃气轮机热障涂层高温腐蚀与防护 [J]. 中国腐蚀与防护学报, 2025, 45: 1
[8] Loganathan A, Gandhi A S. Effect of phase transformations on the fracture toughness of t′ yttria stabilized zirconia [J]. Mater. Sci. Eng., 2012, 556A: 927
[9] Zhang H, Liu X Z, Huang A H, et al. Manufacturing and research progress in metallic bond coats for thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 20
张 晗, 刘轩溱, 黄爱辉 等. 热障涂层金属粘结层制备与研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 20
[10] Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49(1): 163
杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49(1): 163
[11] Yu C T, Liu H, Jiang C Y, et al. Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t′) phase YSZ and thermal cycling behavior [J]. J. Mater. Sci. Technol., 2019, 35: 350
doi: 10.1016/j.jmst.2018.09.040
[12] Qu W W, Chen Z H, Li S S, et al. Failure mechanism of YSZ coatings prepared by EB-PVD under partial penetration of CMAS attacking [J]. Corros. Sci., 2022, 203: 110339
[13] Li W Q, Zhou H X, Su H R, et al. Progress of research on CMAS corrosion resistance of thermal barrier coatings [J]. Mater. Rep., 2023, 37(): 23080141
李文权, 周红霞, 苏浩然 等. 热障涂层的抗CMAS腐蚀研究进展 [J]. 材料导报, 2023, 37(): 23080141
[14] Shan X, Chen W F, Yang L X, et al. Pore filling behavior of air plasma spray thermal barrier coatings under CMAS attack [J]. Corros. Sci., 2020, 167: 108478
[15] Li Y Y, Huang D, Zhang C Y, et al. High-temperature corrosion behaviour of Pt-modified aluminide coating with solid NaCl deposit in O2 + 10vol.%H2O and the influence of pre-oxidation treatment [J]. Corros. Sci., 2022, 204: 110421
[16] Zeng B, Wang J, Fan H Y, et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma [J]. Vacuum, 2020, 174: 109195
[17] Jiang P, Yang L Y, Li D J, et al. Residual stress in air-plasma-sprayed thermal barrier coatings under long-term high-temperature oxidation [J]. Surf. Coat. Technol., 2024, 484: 130827
[18] Li Q, Hu J, Xie J L, et al. Influence of high-enthalpy atmospheric plasma spraying process parameters on microwave dielectric properties of Y2O3 coatings [J]. J. Therm. Spray. Technol., 2021, 30: 898
[19] Huang D, Niu Y S, Li S, et al. Thermal cycling and flame thermal shocking failure mechanism of tetragonal Yttria-stabilized zirconia TBCs prepared on high temperature alloys by suspension plasma spraying [J]. Chin. J. Mater. Res., 2024, 38: 691
doi: 10.11901/1005.3093.2023.471
黄 迪, 牛云松, 李 帅 等. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理 [J]. 材料研究学报, 2024, 38: 691
[20] Ibégazène H, Alpérine S, Diot C. Yttria-stabilized hafnia-zirconia thermal barrier coatings: the influence of hafnia addition on TBC structure and high-temperature behaviour [J]. J. Mater. Sci., 1995, 30: 938
[21] Zhao K R, Huang W Z, Deng P H, et al. Mechanical properties, thermal shock resistance and stress evolution of plasma-sprayed 56wt%Y2O3-stabilized ZrO2 thick thermal barrier coatings [J]. Surf. Coat. Technol., 2024, 494: 131352
[22] Thakur M, Vij A, Kumar A, et al. Structural and optical studies of annealed zirconia nanocrystals: Phase transformations, defect dynamics, and magnetic behaviour [J]. Ceram. Int., 2024, 50: 50680
[23] Tillmann W, Khalil O, Baumann I. Influence of spray gun parameters on inflight particle's characteristics, the splat-type distribution, and microstructure of plasma-sprayed YSZ coatings [J]. Surf. Coat. Technol., 2021, 406: 126705
[24] Wang N, Wang Q S, Wang F C. Process optimization of ZrO2 thermal barrier coating by plasma spraying [J]. China Surf. Eng., 2004, 17(3): 13
王 娜, 王全胜, 王富耻. 等离子喷涂ZrO2热障涂层工艺参数优化设计 [J]. 中国表面工程, 2004, 17(3): 13
[25] Li J F, Liao H L, Ding C X, et al. Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments [J]. J. Mater. Process. Technol., 2005, 160: 34
[26] Mutter M, Mauer G, uer RM, et al. Systematic investigation on the influence of spray parameters on the mechanical properties of atmospheric plasma-sprayed YSZ coatings [J]. J. Therm. Spray Technol., 2018, 27: 566
[27] Lu G M, Wurikaixi A. Process parameter optimization of plasma sprayed TiO2-based coatings [J]. Surf. Technol., 2018, 47(4): 73
路广明, 乌日开西·艾依提. 等离子喷涂TiO2基涂层工艺参数优化研究 [J]. 表面技术, 2018, 47(4): 73
[28] Yan K K, Huang C, Wang W D, et al. Phase structure and surface morphology of Y2O3 coating prepared by air plasma spraying [J]. Heat Treat. Met., 2013, 38(12): 5
闫坤坤, 黄 春, 王文东 等. 大气等离子喷涂氧化钇涂层的相结构及表面形貌 [J]. 金属热处理, 2013, 38(12): 5
[29] Zhang Y, Guo L L, Ju L Y, et al. Flow field characteristics and particle flow characteristics of atmospheric plasma spraying [J]. Powder Metall. Ind., 2022, 32(5): 12
张 勇, 郭龙龙, 鞠录岩 等. 大气等离子喷涂流场特性及颗粒流动特性 [J]. 粉末冶金工业, 2022, 32(5): 12
[30] Gao F, Huang X, Liu R, et al. Optimization of plasma spray process using statistical methods [J]. J. Therm. Spray Technol., 2012, 21(1): 176
[31] Liu M J, Li G R, Yang G J, et al. Plasma spray-physical vapor deposition (PS-PVD) and non-contact detection method of plasma jet [J]. Surf. Technol., 2020, 49(1): 1
刘梅军, 李广荣, 杨冠军 等. 等离子-物理气相沉积(PS-PVD)及其射流非接触检测方法 [J]. 表面技术, 2020, 49(1): 1
[32] Zhang L, Luo X F, Lin R S, et al. Effect of preparation process of Al2O3 overlay on corrosion resistance of YSZ coating in NaCl-KCl molten salt [J]. At. Energy Sci. Technol., 2023, 57: 920
张 磊, 罗晓芳, 林如山 等. Al2O3覆盖层制备工艺对YSZ涂层耐熔盐腐蚀性能的影响 [J]. 原子能科学技术, 2023, 57: 920
[33] Batista C, Portinha A, Ribeiro R M, et al. Morphological and microstructural characterization of laser-glazed plasma-sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 2006, 200: 2929
[34] Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
[35] Jiang S M, Peng X, Bao Z B, et al. Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating [J]. Corros. Sci., 2008, 50: 3213
[36] Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
[1] SHEN Chen, HUANG Jinyang, ZHANG Xingxing, HU Xinyuan, ZHU Ming, LU Jintao. Research Progress of Carbonization-corrosion and Protection of Alloy Steels[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[2] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[3] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[4] ZHANG Juhuan, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[5] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[6] LIU Zhihao, LIU Guangming, HE Sifan, DONG Meng, LI Yu, LI Futian, ZHU Ting. High Temperature Corrosion Behavior of F22 Base Metal and Weld in Simulated Coastal Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[7] WANG Minghao, WANG Huan, LIU Rui, MENG Fandi, LIU Li, WANG Fuhui. Research on Image Recognition for NiCrAlY Coating/N5 High-temperature Alloy System Based on Deep Learning Method[J]. 中国腐蚀与防护学报, 2022, 42(4): 583-589.
[8] GUAN Yu, LIU Guangming, ZHANG Minqiang, LIU Huanhuan, LIU Zhihao, GONG Bingbing. High Temperature Corrosion Behavior of Sanicro 25 Steel in High-sulfur Coal Ash/simulated Flue Gas[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[9] LI Rui, CUI Yu, LIU Li, FAN Lei, MENG Fandi, WANG Fuhui. Corrosion Behavior of Ti60 Alloy in Fog of NaCl Solution at 600 ℃[J]. 中国腐蚀与防护学报, 2021, 41(5): 595-601.
[10] CHEN Tuchun, XIANG Junhuai, JIANG Longfa, XIONG Jian, BAI Lingyun, XU Xunhu, XU Xincheng. High-temperature Corrosion Behavior of Q235 Steel in Oxidizing Atmosphere Containing Chlorine[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[11] Sai YE, Moradi Masoumeh, Zhenlun SONG, Fangqin HU, Zhaohui SHUN, Jianping LONG. Inhibition Effect of Pseudoalteromonas Piscicida on Corrosion of Q235 Carbon Steel in Simulated Flowing Seawater[J]. 中国腐蚀与防护学报, 2018, 38(2): 174-182.
[12] Mingming ZHANG,Li XIN,Xueyong DING,Shujiang GENG,Shenglong ZHU,Fuhui WANG. Corrosion Resistance of Alternately Multilayered Coating Ti/TiAlN on Ti-alloy Ti-6Al-4V Beneath a Solid NaCl Film in Atmosphere of Water Vapor and Oxygen at 600 ℃[J]. 中国腐蚀与防护学报, 2017, 37(1): 29-35.
[13] Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments[J]. 中国腐蚀与防护学报, 2016, 36(5): 505-512.
[14] HUANG Bensheng,YIN Wenfeng,WANG Xiaohong,SHI Yijun. Corrosion Behavior of Steels Used in Making Crude Oil Distillation Unit in High Temperature Crude Oil Fractions[J]. 中国腐蚀与防护学报, 2013, 33(5): 377-382.
[15] PAN Taijun, CHEN Degui, ZHANG Ke, HU Jing. HIGH TEMPERATURE CORROSION OF NF616 AND 12CrMoV IN SIMULATED WASTE-GASIFICATION ENVIROMENTS[J]. 中国腐蚀与防护学报, 2011, 31(6): 457-461.
No Suggested Reading articles found!