Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 905-915    DOI: 10.11902/1005.4537.2024.232
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials
FANG Huanjie1, ZHOU Peng1,2,3(), YU Jianhao1, WANG Yongxin1(), YU Bo3, PU Jibin1
1 State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 Liupanshan Laboratory, Yinchuan 750000, China
3 College of Mechanical and Electronical Engineering, Nanjing Forestry University, Nanjing 210037, China
Cite this article: 

FANG Huanjie, ZHOU Peng, YU Jianhao, WANG Yongxin, YU Bo, PU Jibin. Galvanic Corrosion Behavior of Coupling Pairs of Ti80 Alloy with Various Marine Metallic Materials. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 905-915.

Download:  HTML  PDF(15435KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti-alloy has widely used in the manufacture of advanced marine equipment. However, in practical applications, galvanic corrosion may tend to happen when Ti-alloy is coupled with dissimilar metallic materials, which significantly threatens the reliability and service lifetime of marine equipment. In present work, the galvanic corrosion behavior of coupling pairs of Ti80 alloy with four commonly-used metallic materials for marine engineering, such as 921A steel, B10 Cu-alloy, 6061 Al-alloy and 40Cr steel respectively, in NaCl solution was studied via weight change measurement, open circuit potential measurement, potentiodynamic polarization measurement and electrochemical impedance spectroscopy as well as 3D optical profilometer, Fe-SEM and XRD. It is found that galvanic corrosion may occur when Ti80 alloy is coupled with any one of the four metallic materials, while the galvanic corrosion does not alter the corrosion behavior of the anode material for the four pairs. Even though, the difference of free-corrosion potentials between the two metallic materials of the coupling pair will play the role as driving force for electron transfer of the coupling system, which may lead to the accelerated dissolution of the metallic material acted as the anode. By taking the free-corrosion rate of the four test metallic materials as reference, after being coupled with Ti80 alloy the increment in corrosion rate of the four metallic materials can be ranked as follows: 6061 > 40Cr > 921A > B10. Besides, it is noted that there is not positively correlation between the galvanic corrosion effect with the potential difference of the coupling pairs.

Key words:  marine environment      Ti80 alloy      marine metal      galvanic corrosion      corrosion mechanism     
Received:  30 July 2024      32134.14.1005.4537.2024.232
ZTFLH:  TG172  
Fund: Science and Technology Innovation 2025 Major Project of Ningbo(2022Z185);Naturial Science Foundation of Ningbo(2023J328);Basic Research Project of Liupanshan Laboratory(LPS-2024-KY-D-JC-0019);Basic Research Project of Liupanshan Laboratory(LPS-2024-KY-D-JC-0018)
Corresponding Authors:  WANG Yongxin, E-mail: yxwang@nimte.ac.cn;
ZHOU Peng, E-mail: zhoupengnifu@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.232     OR     https://www.jcscp.org/EN/Y2025/V45/I4/905

Fig.1  Schematic diagram of electrochemical experimental device
Fig.2  Open circuit potentials of five kinds of alloys in 3.5%NaCl solution at ambient temperature and pressure: (a) 921A, B10, 6061, 40Cr and Ti80 alloys; (b) B10 and Ti80 alloys
Fig.3  Potentiodynamic polarization curves of 921A (a), B10 (b), 6061 (c) and 40Cr (d) alloys before and after coupling with Ti80 alloy
SampleEcorr / VIcorr / A·cm-2βa / V·dec-1βc / V·dec-1
921A-0.6194.796 × 10-60.0240.806
921A/Ti80-0.6318.582 × 10-60.1380.250
B10-0.2782.847 × 10-60.6570.056
B10/Ti80-0.2812.887 × 10-60.7140.058
6061-1.2593.663 × 10-40.6340.161
6061/Ti80-1.3326.897 × 10-40.8800.196
40Cr-0.4741.307 × 10-60.0860.385
40Cr/Ti80-0.5889.894 × 10-60.8060.093
Table 1  Electrochemical parameters of 921A, B10, 6061 and 40Cr alloys before and after coupling with Ti80 alloy
Fig.4  Nyquist (a1-d1) and Bode (a2-d2) plots of 921A (a), B10 (b), 6061 (c) and 40Cr (d) alloys before and after coupling with Ti80 alloy
Fig.5  Equivalent circuit models for fitting EIS data of B10 alloy (a) and other alloys (b)
SampleRs / Ω·cm2CPE1 / μF·cm-2n1Rf / Ω·cm2CPE2 / μF·cm-2n2Rct / Ω·cm2W / Ω-1·s1/2
921A9.9476.485 × 10-40.760916.992.590 × 10-40.84474.471 × 103-
921A/Ti808.9981.652 × 10-30.84662.610 × 1039.897 × 10-40.71222.355 × 102-
B108.8478.330 × 10-41.00004.920 × 1041.894 × 10-50.90031.787 × 1041.761 × 10-5
B10/Ti806.7149.846 × 10-50.87099.242 × 1034.785 × 10-50.87133.752 × 103-
60612.5723.381 × 10-50.93262.174 × 1032.596 × 10-30.70653.196 × 102-
6061/Ti803.5618.399 × 10-50.83763.368 × 1035.552 × 10-50.90312.959 × 102-
40Cr8.3342.582 × 10-31.00001.766 × 1021.000 × 10-30.78582.406 × 103-
40Cr/Ti8012.0501.273 × 10-30.75932.130 × 1031.681 × 10-30.98874.001 × 102-
Table 2  Fitting data of EIS of 921A, B10, 6061 and 40Cr alloys before and after coupling with Ti80 alloy
Fig.6  Surface morphologies and three-dimensional images of 921A (a) and 921A/Ti80 (b) after immersion in 3.5%NaCl solution for 16 d
Fig.7  XRD patterns of 921A and 921A/Ti80 after immersion in 3.5%NaCl solution for 16 d
Fig.8  Surface morphologies (a1, a2, b1, b2) and three-dimensional images (a3, b3) of B10 (a) and B10/Ti80 (b) after immersion in 3.5%NaCl solution for 16 d
Fig.9  XRD patterns of B10 and B10/Ti80 after immersion in 3.5%NaCl solution for 16 d
Fig.10  Surface morphologies and three-dimensional images of 6061 (a) and 6061/Ti80 (b) after immersion in 3.5%NaCl solution for 16 d
Fig.11  XRD patterns of 6061 and 6061/Ti80 after immersion in 3.5%NaCl solution for 16 d
Fig.12  XRD patterns of 40Cr and 40Cr /Ti80 after immersion in 3.5%NaCl solution for 16 d
Fig.13  Surface morphologies and three-dimensional images of 40Cr (a) and 40Cr/Ti80 (b) after immersion in 3.5%NaCl solution for 16 d
Fig.14  Changes of corrosion rates of 921A (a), B10 (b), 6061 (c) and 40Cr (d) alloys after coupling with Ti80 in 3.5%NaCl solution for 16 d
[1] Yang Y L, Luo Y Y, Zhao H Z, et al. Research and application status of titanium alloys for warships in China [J]. Rare Metal Mater. Eng., 2011, 40(suppl.2) : 538
(杨英丽, 罗媛媛, 赵恒章 等. 我国舰船用钛合金研究应用现状 [J]. 稀有金属材料与工程, 2011, 40(): 538)
[2] Yan S K, Song G L, Li Z X, et al. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments [J]. J. Mater. Sci. Technol., 2018, 34: 421
doi: 10.1016/j.jmst.2017.11.021
[3] Zhao Y Q. The new main titanium alloys used for shipbuilding developed in China and their applications [J]. Mater. China, 2014, 33: 398
(赵永庆. 我国创新研制的主要船用钛合金及其应用 [J]. 中国材料进展, 2014, 33: 398)
[4] Yang X D, Wu X F, Yin X H, et al. Study on galvanic corrosion behavior of aluminum bronze/Ti80 alloy/2205 stainless steel in seawater [J]. Dev. Appl. Mater., 2019, 34(2): 28
(杨学东, 吴晓飞, 尹晓辉 等. 铝青铜/Ti80合金/2205不锈钢在海水中电偶腐蚀行为研究 [J]. 材料开发与应用, 2019, 34(2): 28)
[5] Dong K H, Song Y W, Chang F C, et al. Galvanic corrosion mechanism of Ti-Al coupling: the impact of passive films on the coupling effect [J]. Electrochim. Acta, 2023, 462: 142662
[6] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
(雷 冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[7] Chen X W, Wu J H, Wang J, et al. Progress in research on factors influencing galvanic corrosion behavior [J]. Corros. Sci. Prot. Technol., 2010, 22: 363
(陈兴伟, 吴建华, 王 佳 等. 电偶腐蚀影响因素研究进展 [J]. 腐蚀科学与防护技术, 2010, 22: 363)
[8] Al-Hossani H I, Saber T M H, Mohammed R A, et al. Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian gulf water [J]. Desalination, 1997, 109: 25
[9] Kamble P A, Deshpande P P, Vagge S T. Numerical investigation of galvanic corrosion between galvanized steel and mild steel in bolted joint [J]. Mater. Today Proc., 2022, 50: 1923
[10] Blasco-Tamarit E, Igual-Muñoz A, García Antón J G. Effect of temperature on the galvanic corrosion of a high alloyed austenitic stainless steel in its welded and non-welded condition in LiBr solutions [J]. Corros. Sci., 2007, 49: 4472
[11] Hasan B O. Galvanic corrosion of carbon steel-brass couple in chloride containing water and the effect of different parameters [J]. J. Petrol. Sci. Eng., 2014, 124: 137
[12] Li Q C, Yang J, Wu L, et al. Influence of pressure on galvanic corrosion of 907/921/B10 couples in simulated deep-sea environment [J]. Int. J. Electrochem. Sci., 2016, 11: 6443
[13] Xie W C, Li J S, Li Y L. Electrochemical corrosion behavior of carbon steel and hot dip galvanized steel in simulated concrete solution with different pH values [J]. Mater. Sci., 2017, 23: 280
[14] Donatus U, Thompson G E, Zhou X R. Effect of near-ambient temperature changes on the galvanic corrosion of an AA2024-T3 and mild steel couple [J]. J. Electrochem. Soc., 2015, 162: C42
[15] Guo R, Yang P, Mao F X, et al. Electrochemical noise studies on complex galvanic corrosion of submarine cable armor layer in artificial seawater [J]. Mater. Corros., 2022, 73: 379
[16] Yu B, Zhou P, Fang H J, et al. Effects of the TiO2 content on the mechanical properties and galvanic corrosion resistance of Al2O3 coatings [J]. Ceram. Int., 2023, 49: 38593
[17] Qiu J, Wu A J, Li Y H, et al. Galvanic corrosion of Type 316L stainless steel and Graphite in molten fluoride salt [J]. Corros. Sci., 2020, 170: 108677
[18] Zhao L H, Wang Y Q, Liu Y H, et al. Corrosion behavior of four steels for landing gear of amphibious aircraft in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1263
(赵连红, 王英芹, 刘元海 等. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1263)
doi: 10.11902/1005.4537.2023.373
[19] Wang M X. Reaserch on galvanic corrosion mechanics of stirrups in concrete structure [D]. Nanning: Guangxi University, 2008
(王明星. 混凝土结构中箍筋的电偶腐蚀机理研究 [D]. 南宁: 广西大学, 2008)
[20] Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions [J]. Corros. Sci., 2009, 51: 979
[21] Feng X T, Lei J B, Gu H, et al. Effect of scanning speeds on electrochemical corrosion resistance of laser cladding TC4 alloy [J]. Chin. Phys., 2019, 28B: 026802
[22] Xie H. Research on the galvanic corrosion behavior of marine titanium alloy and other metals and application of protective coating technology [D]. Beijing: Beijing University of Chemical Technology, 2023
(解 辉. 船用钛合金与其它金属电偶腐蚀行为及其防护涂层技术应用研究 [D]. 北京: 北京化工大学, 2023)
[23] Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-, NO 3 - and SO 4 2 - ions on anodic dissolution of pure aluminum in alkaline solution [J]. Corros. Sci., 1999, 41: 653
[24] Marcus P, Maurice V, Strehblow H H. Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure [J]. Corros. Sci., 2008, 50: 2698
[25] Sun B, Ye T Y, Feng Q, et al. Accelerated degradation test and predictive failure analysis of B10 copper-nickel alloy under marine environmental conditions [J]. Materials (Basel), 2015, 8: 6029
[26] Ismail K M, Fathi A M, Badawy W A. Electrochemical behavior of copper-nickel alloys in acidic chloride solutions [J]. Corros. Sci., 2006, 48: 1912
[27] Badawy W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions [J]. Electrochim. Acta, 2005, 50: 3603
[28] Campbell S A, Radford G J W, Tuck C D S, et al. Corrosion and galvanic compatibility studies of a high-strength copper-nickel alloy [J]. Corrosion, 2002, 58: 57
[1] LIU Sen, HU Jiayuan, WEN Xiaohan, ZHU Renzheng, LI Yanwei, YANG Xiaojia. Corrosion Behavior of Five Type of Power Grid Materials in Natural Coastal Environments[J]. 中国腐蚀与防护学报, 2025, 45(4): 1107-1116.
[2] DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[3] WANG Yuhan, LI Jun, LIU Hengwei, XU Nan, LIU Jie, CHEN Xu. Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[4] WEI Ran, JIANG Quantong, SUN Chen, WANG Weiwei, DUAN Jizhou, HOU Baorong. A Review on Corrosion and Protection of Mg-alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[5] SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[6] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[7] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[8] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[9] ZHANG Juhuan, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Electrochemical Performance of a Novel Al-Zn-In-Sn-La Sacrificial Anode Alloy in Simulated Marine Environments[J]. 中国腐蚀与防护学报, 2024, 44(5): 1223-1233.
[10] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[11] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[12] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[13] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[14] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[15] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
No Suggested Reading articles found!