Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (4): 1005-1013    DOI: 10.11902/1005.4537.2024.261
Current Issue | Archive | Adv Search |
Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel
MA Heng1, WANG Zhongxue1, PANG Kun2(), ZHANG Qingpu1, CUI Zhongyu2
1 Shandong Iron and Steel Co., Ltd., Jinan 271104, China
2 School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

MA Heng, WANG Zhongxue, PANG Kun, ZHANG Qingpu, CUI Zhongyu. Localized Corrosion Behavior Induced by Corrosion-active Inclusion in Low Alloy Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1005-1013.

Download:  HTML  PDF(26610KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The localized corrosion behavior of EH690, a 690 MPa grade low alloy steel in an artificial chloride containing acidic seawater was assessed via immersion test, optical microscope, laser confocal microscope, and scanning electron microscope with energy dispersive spectroscope, in terms of the effect active inclusions on the localized corrosion of the steel. It is found that the inclusions in EH690 steel are similar in shape, mainly spherical or ellipsoidal, with a diameter of 1-4 μm. The types of inclusions in steel plates of different thickness are basically the same, which may be divided into three categories: (Mn,Ca)S-MgO·Al2O3, (Mn,Ca)S-MgO·Al2O3-TiN, and (Mn,Ca)S. The density of the corrosion-active inclusion is higher on the surface area of the thick plate. The dissolution of corrosion-active inclusions first occurs at the interface between the inclusion and the matrix, meanwhile causes corrosion of matrix. However, in case when immersion in the same medium for the same period, these inclusions exhibit different corrosion activities, which may be due to the different diffusion capabilities of aggressive particles in the pits and the micro-galvanic corrosion within the pits.

Key words:  low alloy steel      inclusion      localized corrosion      corrosion initiation     
Received:  20 August 2024      32134.14.1005.4537.2024.261
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2023YFB3710300);Special Fund for Taishan Industrial Leading Talent Project
Corresponding Authors:  PANG Kun, E-mail: pangkun@ouc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.261     OR     https://www.jcscp.org/EN/Y2025/V45/I4/1005

Fig.1  Metallographic images of EH690 marine engineering steel: (a) sample 1#, (b) sample 2#, (c) sample 3#
Fig.2  SEM morphologies of original inclusions in EH690 steel: (a-c) sample 1#, (d-f) sample 2#, (g-i) sample 3#
Fig.3  EDS spectra of non-metallic inclusions in EH690 steel: (a) sample 1#, (b) sample 2#, (c) sample 3#
Fig.4  Schematic diagram of formation of composite inclusion in EH690 steel
Fig.5  Microscopic images of EH690 steel after immersion for 1 min (a), 5 min (b), 15 min (c) and 20 min (d)
Fig.6  Densities of active inclusions at different locations in EH690 steel
Fig.7  Optical microscopic morphology (a), height map (b), cross-sectional profile (c) and 3D side view (d) of EH690 steel after immersion, showing the occurrence of inclusion induced localized corrosion
Fig.8  SEM morphologies of non-active (a) and active (b, c) inclusions in EH690 steel after immersion
Fig.9  EDS elemental distributions of non-active (a) and active (b) inclusions in EH690 steel after immersion
Fig.10  Formation mechanism diagrams of pits with different morphologies during inclusion induced corrosive pitting
[1] Wang Y X, Zhu A H, Wang L W, et al. Comparative study on corrosion behavior of two novel Ni-Cr-Mo-V steels in simulated seawater environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 918
(王玉雪, 朱澳鸿, 王力伟 等. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 918)
doi: 10.11902/1005.4537.2024.032
[2] Liu Q, Yang S F, Zhao M J, et al. Pitting corrosion of steel induced by Al2O3 inclusions [J]. Metals, 2017, 7: 347
[3] Zhao Y G, Zhao X H, Xia F, et al. Unraveling the effect of sulfide-oxide complex inclusions on the localized corrosion mechanism for carbon steel [J]. Corros. Sci., 2023, 224: 111555
[4] Liu C, Chen T Q, Li X G. Research progress on initiation mechanism of local corrosion induced by inclusions in low alloy steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 746
(刘 超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 746)
[5] Bai X F, Sun Y H, Chen R M, et al. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels [J]. Int. J. Miner., Metall., Mater., 2019, 26: 573
[6] Guo J, Cheng S S, Cheng Z J, et al. Thermodynamics for precipitation of CaS bearing inclusion and their deformation during rolling process for Al-killed Ca-treated steel [J]. Steel Res. Int., 2013, 84: 545
[7] Guo J, Cheng S S, Guo H J, et al. Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium [J]. Int. J. Miner., Metall., Mater., 2018, 25: 280
[8] Nishimoto M, Muto I, Sugawara Y, et al. Cerium addition to CaS inclusions in stainless steel: insolubilizing water-soluble inclusions and improving pitting corrosion resistance [J]. Corros. Sci., 2021, 180: 109222
[9] Liu P, Zhang Q H, Li X R, et al. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel [J]. J. Mater. Sci. Technol., 2021, 64: 99
doi: 10.1016/j.jmst.2020.06.031
[10] Brooksbank D, Andrews K W. Stress fields around inclusions and their relation to mechanical properties [J]. J. Iron. Steel. Inst., 1972, 210: 246
[11] Denisova T V, Vyboishchik M A, Tetyueva T V, et al. Changes in the structure and properties of low-carbon low-alloy pipe steels upon inoculation with REM [J]. Met. Sci. Heat Treat., 2013, 54: 530
[12] Wang Y, Sridhar S, Valdez M. Formation of CaS on Al2O3-CaO inclusions during solidification of steels [J]. Metall. Mater. Trans., 2002, 33B: 625
[13] Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
[14] Zhu C Y, Huang L Y, Luo X Y, et al. Effect of calcium treatment on characteristics of inclusions in finished non-oriented silicon steel [J]. J. Iron Steel Res., 2020, 32: 117
(朱诚意, 黄罗翼, 罗小燕 等. 钙处理对成品无取向硅钢夹杂物特性的影响 [J]. 钢铁研究学报, 2020, 32: 117)
doi: 10.13228/j.boyuan.issn1001-0963.20190141
[15] Shin J H, Park J H. Formation mechanism of oxide-sulfide complex inclusions in high-sulfur-containing steel melts [J]. Metall. Mater. Trans., 2018, 49B: 311
[16] Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
[17] Li W, Li D Y. Variations of work function and corrosion behaviors of deformed copper surfaces [J]. Appl. Surf. Sci., 2005, 240: 388
[18] Mao Y C, Zhu Y, Sun S K, et al. Localized corrosion of 5083 Al-alloy in simulated marine splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 47
(毛英畅, 祝 钰, 孙圣凯 等. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 47)
doi: 10.11902/1005.4537.2022.162
[19] Han Y L, Li J, Guo L Y, et al. Localized corrosion behavior induced by MnS inclusions in HRB400E rebar steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1255
(韩宇龙, 李 健, 郭丽雅 等. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1255)
doi: 10.11902/1005.4537.2023.337
[1] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[2] YANG Cheng, YANG Guangming, WANG Jianjun, MIAO Xueliang, ZHANG Yi, SUN Baozhuang, LIU Zhiyong. Effect of Temperature on Corrosion Behavior of 42CrMoE Low-alloy Steel in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(5): 1345-1352.
[3] HAN Yulong, LI Jian, GUO Liya, YANG Bianjiang, LU Hengchang, WEI Xicheng, DONG Han. Localized Corrosion Behavior Induced by MnS Inclusions in HRB400E Rebar Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1255-1262.
[4] WANG Yuxue, ZHU Aohong, WANG Liwei, CUI Zhongyu. Comparative Study on Corrosion Behavior of Two Novel Ni-Cr-Mo-V Steels in Simulated Seawater Environment[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[5] LIU Chao, DAI Wenhe, WANG Kejun, CHEN Zengyao, AN Yanjun, LIU Zhiyong. Effect of Cu Content on Corrosion Behavior of Q420 Steel in an Artificial Solution of Bottom Plate Environment of Cargo Oil Tanks[J]. 中国腐蚀与防护学报, 2024, 44(4): 927-938.
[6] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[7] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[10] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[11] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[12] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[13] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[14] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[15] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
No Suggested Reading articles found!