Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 653-663    DOI: 10.11902/1005.4537.2024.171
Current Issue | Archive | Adv Search |
Influence of Hydrostatic Pressure on Corrosion Behavior of Base Metaland Welded Joint of GPa-grade Offshore Engineering Steel in 3.5%NaCl Solution
WANG Yadong1, MA Rongyao2(), WAN Ye1(), DONG Junhua2
1.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

WANG Yadong, MA Rongyao, WAN Ye, DONG Junhua. Influence of Hydrostatic Pressure on Corrosion Behavior of Base Metaland Welded Joint of GPa-grade Offshore Engineering Steel in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 653-663.

Download:  HTML  PDF(10402KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of different hydrostatic pressures (0.1, 6, and 12 MPa) on the corrosion behavior of the base metal and welded joint for a GPa-grade offshore engineering steel in a 3.5%NaCl solution was investigated by using linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise (EN) methods. The results indicate that in conditions of various hydrostatic pressures, the corrosion resistance of the base metal of the GPa-grade offshore engineering steel is better than that of the welded joint. Hydrostatic pressure has a minor impact on the cathodic process of both the matrix and the welded joint, but it can promote their anodic dissolution process, thereby accelerating the corrosion rate of both. With the increasing hydrostatic pressure, the local corrosion susceptibility of both the base metal and welded joint of GPa-grade offshore engineering steel was enhanced.

Key words:  hydrostatic pressure      GPa-grade offshore engineering steel      base material      welded joint      electrochemical noise     
Received:  31 May 2024      32134.14.1005.4537.2024.171
ZTFLH:  TG172  
Fund: Major R&D Project of Liaoning Province(2020JH1/10100001);National Natural Science Foundation of China(52201094)
Corresponding Authors:  MA Rongyao, E-mail: ryma14b@imr.ac.cn; WAN Ye, E-mail: ywan@sjzu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.171     OR     https://www.jcscp.org/EN/Y2025/V45/I3/653

Fig.1  Metallographic structure of the base metal (a) and welded beam (b) of GPa-grade offshore engineering steel
Fig.2  Surface morphologies of GPa-grade offshore engineering steel base metal (a, b) and welded beam (c, d) after corrosion in 0.1 MPa (a, c) and 12 MPa (b, d) 3.5%NaCl solution
Fig.3  Polarization curves of the base metal (a) and welded beam (b) of GPa-grade offshore engineering steel under different hydrostatic pressures
MaterialsPressure / MPaEcorr / VIcorr / μA·cm-2
Matrix0.1-0.5333.154
6-0.5893.851
12-0.5925.503
Welded0.1-0.5863.275
6-0.5945.978
12-0.6126.575
Table 1  Ecorr and Icorr parameters obtained by fitting the polarization curve
Fig.4  RLPR values of the base metal and welded beam of GPa-grade offshore engineering steel under different hydrostatic pressures
Fig.5  Nyquist (a, c) and Bode (b, d) plots of the base metal (a, b) and welded beam (c, d) of GPa-grade offshore engineering steel under different static hydrostatic pressures
Fig.6  Equivalent circuit for fitting EIS
MaterialPressureRsQo, YQo, nRoWoQa, YQa, nRa
MPaΩ·cm2mS·s n ·cm2-Ω·cm2mS·s0.5·cm2mS·s n ·cm2-Ω·cm2
Matrix0.16.441.35 × 10-30.87525693.95 × 10-24.29 × 10-40.59717.24
66.791.45 × 10-30.92023901.74 × 10-23.34 × 10-20.60513.31
126.891.19 × 10-30.86421461.65 × 10-34.55 × 10-30.58412.84
Welded0.16.689.18 × 10-40.90224361.24 × 10-22.60 × 10-30.63314.59
66.561.90 × 10-30.75822371.88 × 10-25.01 × 10-30.6325.525
127.587.46 × 10-51.00019918.45 × 10-38.55 × 10-40.8560.687
Table 2  The parameters obtained by fitting the electrochemical impedance
Fig.7  Noise spectra of electrochemical potential after DC drift removal for the base metal and welded beam at 0.1 and 12 MPa, respectively
Fig.8  Noise spectra of electrochemical current after DC drift removal for the base metal and welded at 0.1 and 12 MPa, respectively
Fig.9  q vs fn plots for GPa-grade offshore engineering steel in 3.5%NaCl at static hydrostatic pressures of 0.1 and 12 MPa
Fig.10  Typical Hilbert spectra of electrochemical potential noise (EPN) for the base metal (a, b) and welded beam (c, d) of GPa-grade offshore engineering steel in 3.5%NaCl at static hydrostatic pressures of 0.1 MPa (a, c) and 12 MPa (b, d)
Fig.11  Hilbert marginal spectra of the base metal (a, b) and welded beam (c, d) of GPa-grade offshore engineering steel in 3.5%NaCl at static hydrostatic pressures of 0.1 MPa (a, c) and 12 MPa (b, d)
[1] Jia H G. Research on property of Zn reference sacrificial electrode and aluminium alloy anodes under deep-sea simulation [D]. Qingdao: Ocean University of China, 2014
贾红刚. 模拟深海环境下锌参比电极与铝合金牺牲阳极性能研究 [D]. 青岛: 中国海洋大学, 2014
[2] Sun H J. Study on the corrosion behavior of low alloy steel and cathodic protection properties of sacrificial anode in deep sea environment [D]. Shenyang: University of Chinese Academy of Sciences (Institute of Metal Research, Chinese Academy of Sciences), 2013
孙海静. 深海环境下低合金钢的腐蚀行为及其牺牲阳极阴极保护研究 [D]. 沈阳: 中国科学院大学(中国科学院金属研究所), 2013
[3] Wang J L. The manufacture of experiment equipment for simulated deep sea pressure and study on the influence of deep sea pressure on corrosion behaviors of Q235 mild steel and 316L stainless steel [D]. Qingdao: Ocean University of China, 2013
王金龙. 模拟深海压力实验装置的制备以及压力对Q235碳钢和316L不锈钢腐蚀行为的影响 [D]. 青岛: 中国海洋大学, 2013
[4] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment [J]. Int. J. Hydrog. Energy, 2017, 42: 27446
[5] Yang Z X, Kan B, Li J X, et al. A statistical study on the effect of hydrostatic pressure on metastable pitting corrosion of X70 pipeline steel [J]. Materials (Basel), 2017, 10: 1307
[6] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminium in sea water [J]. Br. Corros. J., 1985, 20: 183
[7] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic pressure on passivating power of corrosion layers formed on 6061 T6 aluminium alloy in sea water [J]. Br. Corros. J., 1994, 29: 65
[8] Beccaria A M, Poggi G. Influence of hydrostatic pressure and salt concentration on aluminum corrosion in NaCl solutions [J]. Corrosion, 1986, 42: 470
[9] Beccaria A M, Poggi G. Aluminum corrosion in slightly alkaline sodium sulfate solutions at different hydrostatic pressures [J]. Corrosion, 1987, 43: 153
[10] Beccaria A M, Ltraverso P, Poggi G, et al. Effect of hydrostatic pressure on corrosion behaviour of 5086 Al-alloy in sea water [J]. High Press. Res., 1991, 7: 347
[11] Beccaria A M, Poggi G. Effect of some surface treatments on kinetics of aluminium corrosion in NaCl solutions at various hydrostatic pressures [J]. Br. Corros. J., 1986, 21: 19
[12] Beccaria A M, Fiordiponti P, Mattogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions [J]. Corros. Sci., 1989, 29: 403
[13] Beccaria A M, Poggi G, Arfelli M, et al. The effect of salt concentration on nickel corrosion behaviour in slightly alkaline solutions at different hydrostatic pressures [J]. Corros. Sci., 1993, 34: 989
[14] Beccaria A M, Poggi G, Castello G. Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water [J]. Br. Corros. J., 1995, 30: 283
[15] Zheng J Q. Research of prosess of pitting corrosion of stainless steels in simulated deep-sea environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
郑家青. 模拟深海环境下不锈钢点蚀性能研究 [D]. 镇江: 江苏科技大学, 2011
[16] Zhang C, Zhang Z W, Liu L. Degradation in pitting resistance of 316L stainless steel under hydrostatic pressure [J]. Electrochim. Acta, 2016, 210: 401
[17] Wang Z Y, Cong Y, Zhang T. Effect of hydrostatic pressure on the pitting corrosion behavior of 316l stainless steel [J]. Int. J. Electrochem. Sci., 2014, 9: 778
[18] Cong Y. Effect of crevice and hydrostatic pressure on the corrosion behaviors of 316L stainless steel [D]. Harbin: Harbin Engineering University, 2010
丛 园. 缝隙和静水压力环境对316L不锈钢腐蚀行为的影响 [D]. 哈尔滨: 哈尔滨工程大学, 2010
[19] Zhang T, Yang Y G, Shao Y W, et al. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy [J]. Electrochim. Acta, 2009, 54: 3915
[20] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[21] Yang Y G, Zhang T, Shao Y W, et al. New understanding of the effect of hydrostatic pressure on the corrosion of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2013, 73: 250
[22] Wang J B. Study on corrosion of X80 pipeline steel welded joint and its mechanism [D]. Ji'nan: Qilu University of Technology, 2021
王建保. X80管线钢焊接接头腐蚀行为及其机理研究 [D]. 济南: 齐鲁工业大学, 2021
[23] Li Y. Study on stress corrosion behavior of welded joints of marine steel in simulated marine environment [D]. Zhenjiang: Jiangsu University of Science and Technology, 2023
李 洋. 船用钢焊接接头在模拟海洋环境下的应力腐蚀行为研究 [D]. 镇江: 江苏科技大学, 2023
[24] Yin B. Study on corrosion resistance of offshore platform steel A710 welded joint [J]. Hot Work. Technol., 2018, 47(3): 223
尹 波. 海洋平台用钢A710焊接接头的耐蚀性研究 [J]. 热加工工艺, 2018, 47(3): 223
[25] Guo H, Cheng X D, Zhang H X, et al. Corrosion behavior of welded joint of low alloy high strength steel in 3.5%NaCl solution [J]. Hot Work. Technol., 2021, 50(13): 49
郭 晗, 程旭东, 张慧霞 等. 低合金高强钢焊接接头在3.5%NaCl溶液中的腐蚀行为 [J]. 热加工工艺, 2021, 50(13): 49
[26] Ma G. Corrosion behaviour research of X70 pipeline steel welded joints for deep sea [D]. Zhengzhou: Zhengzhou University, 2017
马 歌. 深海用X70管线钢焊接接头耐蚀性研究 [D]. 郑州: 郑州大学, 2017
[27] Ma G, Zuo X R, Hong L, et al. Investigation of corrosion behavior of welded joint of X70 pipeline steel for deep sea [J]. Acta Metall. Sin., 2018, 54: 527
doi: 10.11900/0412.1961.2017.00149
马 歌, 左秀荣, 洪 良 等. 深海用X70管线钢焊接接头腐蚀行为研究 [J]. 金属学报, 2018, 54: 527
[28] Cao Z H, Liao K X, Li W, et al. Study on corrosion behavior of welded joints of X56 steel in seawater [J]. Hot Work. Technol., 2017, 46(10): 70
曹增辉, 廖柯熹, 李 伟 等. X56钢焊接接头在海水中的腐蚀行为研究 [J]. 热加工工艺, 2017, 46(10): 70
[29] Liu Z Y, Wan H X, Li C, et al. Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 321
刘智勇, 万红霞, 李 禅 等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比 [J]. 中国腐蚀与防护学报, 2014, 34: 321
doi: 10.11902/1005.4537.2013.156
[30] Ma R Y, Wang C G, Mu X, et al. Influence of hydrostatic pressure on corrosion behavior of ultrapure Fe [J]. Acta Metall. Sin., 2019, 55: 859
马荣耀, 王长罡, 穆 鑫 等. 静水压力对超纯Fe腐蚀行为的影响 [J]. 金属学报, 2019, 55: 859
doi: 10.11900/0412.1961.2019.00044
[31] Ma R Y, Zhao L, Wang C G, et al. Influence of hydrostatic pressure on the thermodynamics and kinetics of metal corrosion [J]. Acta Metall. Sin., 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
马荣耀, 赵 林, 王长罡 等. 静水压力对金属腐蚀热力学及动力学的影响 [J]. 金属学报, 2019, 55: 281
doi: 10.11900/0412.1961.2018.00215
[32] Li L, Qiao Y X, Zhang L M, et al. Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel [J]. Int. J. Miner. Metall. Mater., 2023, 30: 1338
[33] Na K H, Pyun S I. Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis [J]. J. Electroanal. Chem., 2006, 596: 7
[34] Na K H, Pyun S I. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663
[35] Na K H, Pyun S I, Kim H P. Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions [J]. Corros. Sci., 2007, 49: 220
[36] Cottis R A, Al-Awadhi M A A, Al-Mazeedi H, et al. Measures for the detection of localized corrosion with electrochemical noise [J]. Electrochim. Acta, 2001, 46: 3665
[37] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280
[38] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787
[39] Sánchez-Amaya J M, Bethencourt M, González-Rovira L, et al. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments [J]. Electrochim. Acta, 2007, 52: 6569
[40] Zhang J. Research on crevice corrosion behaviour of 5083 and 6061 aluminum alloys [D]. Harbin: Harbin Engineering University, 2013
张 晋. 5083和6061铝合金缝隙腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013
[41] Cao F H, Zhang Z, Su J X, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359
[42] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1: 266
[43] Dong Z H, Guo X P, Zheng J S, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3: 561
[44] Moshrefi R, Mahjani M G, Jafarian M. Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification [J]. Electrochem. Commun., 2014, 48: 49
[45] Aballe A, Bethencourt M, Botana F J, et al. Using wavelets transform in the analysis of electrochemical noise data [J]. Electrochim. Acta, 1999, 44: 4805
[46] Cai C, Zhang Z, Cao F H, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. J. Electroanal. Chem., 2005, 578: 143
[47] Homborg A M, Van Westing E P M, Tinga T, et al. Novel time–frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97
[48] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. R. Soc. London, 1998, 454A: 903
[49] Shi W, Dong Z H, Guo X P. Analysis of electrochemical noise by Hilbert-Huang transform and its application [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 138
石 维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用 [J]. 中国腐蚀与防护学报, 2014, 34: 138
[1] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[2] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[3] MA Hongyu, LIU Rui, CUI Yu, KE Peiling, LIU Li, WANG Fuhui. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[4] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[5] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[7] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[8] ZHANG Rui, CUI Yu, LIU Li, WANG Fuhui. Effect of Synergy of Water Pressure and Flow Speed on Free-corrosion Behavior of Al-Zn-In Sacrificial Anode in Deep-sea Envioronmem[J]. 中国腐蚀与防护学报, 2023, 43(2): 329-336.
[9] WANG Xinyu, HUANG Feng, LIU Haixia, YUAN Wei, LIU Jing. Corrosion Resistance of Welded Joints of Q690 Bainite Bridge Steel in Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2022, 42(5): 826-832.
[10] WANG Yongxiang, HE Bolin, LI Li. Improvement of Corrosion Fatigue Performance of P355NL1 Steel Welded Joint by Ultrasonic Impact[J]. 中国腐蚀与防护学报, 2022, 42(1): 120-126.
[11] LI Hongjin, WANG Qishan, LIAO Zihan, SUN Xiangrui, SUN Hui, ZHANG Xinyang, CHEN Xu. Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[12] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[13] SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 501-507.
[14] LIN Zhaohui, MING Nanxi, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Hydrostatic Pressure on Corrosion Behavior of X70 Steel in Simulated Sea Water[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[15] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
No Suggested Reading articles found!