Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 103-114    DOI: 10.11902/1005.4537.2024.153
Current Issue | Archive | Adv Search |
Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating
MA Hongyu1,2, LIU Rui1, CUI Yu2(), KE Peiling3, LIU Li1, WANG Fuhui1
1 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Public Technology Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Cite this article: 

MA Hongyu, LIU Rui, CUI Yu, KE Peiling, LIU Li, WANG Fuhui. Effect of Hydrostatic Pressure on Corrosion Behavior of Cr/GLC Laminated Coating. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 103-114.

Download:  HTML  PDF(16109KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of laminated coating chromium/graphite-like amorphous carbon (Cr/GLC) on 431 stainless steel in 3.5%NaCl solution by applied hydrostatic pressures ranging 0.1 MPa to 15 MPa was investigated by in-situ electrochemical measurements, scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). The results showed that high hydrostatic pressure may accelerate the corrosion failure of laminated coating Cr/GLC. Hydrostatic pressure significantly increases the corrosion current density of laminated coating Cr/GLC, promotes Cl- adsorption on the coating surface and inward to the coating/metal substrate interface, thereby decreases the interface bonding strength of coating/metal substrate.

Key words:  Cr/GLC laminated coating      hydrostatic pressure      electrochemical measurement      corrosion     
Received:  16 May 2024      32134.14.1005.4537.2024.153
ZTFLH:  TG174  
Fund: A-class pilot of Chinese Academy of Sciences(XDA22010303)
Corresponding Authors:  CUI Yu, E-mail: ycui@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.153     OR     https://www.jcscp.org/EN/Y2025/V45/I1/103

Fig.1  Simulated deep-sea environment system[30]
Fig.2  Surface (a) and cross-sectional (b) morphologies of Cr/GLC laminated coating, and the growth of nodules on the coating surface (c) and EDS elemental line scanning (d)
Fig.3  Surface morphologies of multilayer Cr/GLC laminated coating after immersion for 48 h (a, b) and 168 h (c, d) at 0.1 MPa (a, c) and 15 MPa (b, d)
Fig.4  Cross-sectional morphologies of Cr/GLC laminated coating after immersion for 48 h (a, b) and 168 h (c, d) at 0.1 MPa (a, c) and 15 MPa (b, d)
Fig.5  Bode plots of Cr/GLC laminated coating after immersion for different time at 0.1 MPa (a-c) and 15 MPa (d-f)
Time / hRs / Ω·cm2Rf / Ω·cm2nfQf / F·cm-2Rdl / Ω·cm2ndlQdl / F·cm-2
0.514.175.32 × 1050.934.36 × 10-64.59 × 1060.929.28 × 10-7
413.975.52 × 1050.944.46 × 10-64.86 × 1060.919.38 × 10-7
813.637.37 × 1050.944.03 × 10-67.67 × 1060.929.54 × 10-7
1214.159.55 × 1050.944.08 × 10-61.05 × 1070.898.52 × 10-7
2414.731.18 × 1060.944.04 × 10-61.09 × 1070.906.71 × 10-7
3614.81.06 × 1060.954.27 × 10-66.51 × 1060.887.09 × 10-7
4812.568.64 × 1050.954.16 × 10-68.66 × 1060.866.73 × 10-7
7211.688.72 × 1050.954.25 × 10-69.13 × 1060.883.21 × 10-7
12010.497.99 × 1050.944.29 × 10-67.96 × 1060.786.42 × 10-7
15611.116.19 × 1050.924.55 × 10-66.37 × 1060.821.09 × 10-6
22813.315.46 × 1050.925.12 × 10-64.83 × 1060.811.19 × 10-6
27612.723.41 × 1050.925.60 × 10-61.22 × 1060.781.33 × 10-6
34810.925.51 × 1050.934.95 × 10-65.83 × 1060.846.98 × 10-7
48013.582.61 × 1050.925.60 × 10-61.08 × 1060.781.10 × 10-6
57612.25.37 × 1050.925.35 × 10-62.47 × 1060.731.04 × 10-6
61212.41.71 × 1050.925.75 × 10-61.01 × 1060.805.56 × 10-7
64813.311.38 × 1050.925.75 × 10-63.93 × 1050.731.09 × 10-6
72012.521.14 × 1050.915.82 × 10-63.60 × 1050.821.09 × 10-6
Table 1  Fitting parameters of EIS of Cr/GLC laminated coating immersed in 3.5%NaCl solution for different time at 0.1 MPa
Time / hRs / Ω·cm2Rf / Ω·cm2nfQf / F·cm-2Rdl / Ω·cm2ndlQdl / F·cm-2
29.485.29 × 1040.932.04×10-51.63 × 1050.838.29 × 10-6
69.405.21 × 1040.922.20×10-51.59 × 1050.778.09 × 10-6
810.495.35 × 1040.931.32×10-51.81 × 1050.783.84 × 10-6
109.415.28 × 1040.922.18×10-51.62 × 1050.811.28 × 10-5
248.504.54 × 1040.901.72×10-59.01 × 1040.752.81 × 10-5
309.425.00 × 1040.922.25×10-51.46 × 1050.812.58 × 10-5
489.344.07 × 1040.902.44×10-55.48 × 1040.788.09 × 10-6
969.273.94 × 1040.902.81×10-54.71 × 1040.793.36 × 10-5
1209.234.02 × 1040.892.95×10-55.42 × 1040.844.93 × 10-5
1329.078.85 × 1030.836.88×10-56.65 × 1040.931.49 × 10-4
1688.976.93 × 1020.781.65×10-48.47 × 1030.723.08 × 10-4
2408.986.11 × 1020.761.99×10-47.68 × 1030.732.93 × 10-4
3609.195.00 × 1020.772.02×10-45.58 × 1030.723.15 × 10-4
Table 2  Fitting parameters of EIS of Cr/GLC laminated coating immersed in 3.5%NaCl solution for different time at 15 MPa
Fig.6  Potentiostatic polarization curves of Cr/GLC laminated coating and 431 stainless steel in 3.5% NaCl solution at 0.1 MPa and 15 MPa
Fig.7  Depth profiles of various elements of Cr/GLC laminated coating immersed at 0.1 MPa (a) and 15 MPa (b), and distribution comparisons of O (c), Cl (d), Cr (e) and Fe (f)
Fig.8  Peak intensity ratios of Cr0.1 MPa and Cr15 MPa within Cr/GLC laminated coating immersed at 0.1 and 15 MPa
Fig.9  Scratch morphologies (a1-d1) and friction curves (a2-d2) of Cr/GLC laminated coating immersed at 0.1 MPa for 0 h (a), 48 h (b), 96 (c), and 168 h (d)
Fig.10  Scratch morphologies (a1-c1) and friction curv-es (a2-c2) of Cr/GLC laminated coating immer-sed at 15 MPa for 48 h (a), 96 h (b) and 168 h (c)
Fig.11  Variations of adhesion of Cr/GLC laminated coating immersed at 0.1 MPa and 15 MPa with immersion time
Fig.12  Schematic illustration of corrosion failure mechanism of Cr/GLC laminated coating
1 Li L, Liu L L, Li X W, et al. Enhanced tribocorrosion performance of Cr/GLC multilayered films for marine protective application [J]. ACS Appl. Mater. Interfaces, 2018, 10: 13187
2 Al Mahmud K A H, Kalam M A, Masjuki H H, et al. An updated overview of diamond-like carbon coating in tribology [J]. Crit. Rev. Solid State Mater. Sci., 2015, 40: 90
3 Ye Y W, Wang C T, Wang Y X, et al. A novel strategy to enhance the tribological properties of Cr/GLC films in seawater by surface texturing [J]. Surf. Coat. Technol., 2015, 280: 338
4 Sharma R, Barhai P K, Kumari N. Corrosion resistant behaviour of DLC films [J]. Thin Solid Films, 2008, 516: 5397
5 Bewilogua K, Hofmann D. History of diamond-like carbon films-from first experiments to worldwide applications [J]. Surf. Coat. Technol., 2014, 242: 214
6 Ma H Y, Liu R, Ke P L, et al. Effect of hydrostatic pressure on the pitting corrosion of 17-4PH martensitic stainless steel [J]. Eng. Failure Anal., 2022, 138: 106367
7 Liu R, Liu L, Wang F H. The role of hydrostatic pressure on the metal corrosion in simulated deep-sea environments-a review [J]. J. Mater. Sci. Technol., 2022, 112: 230
8 Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
9 Sun H J, Liu L, Li Y, et al. Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel [J]. J. Electrochem. Soc., 2013, 160: C89
10 Hu S B, Liu L, Cui Y, et al. Influence of hydrostatic pressure on the corrosion behavior of 90/10 copper-nickel alloy tube under alternating dry and wet condition [J]. Corros. Sci., 2019, 146: 202
11 Meng F D, Gao H D, Liu L, et al. Preparation and anticorrosive performance of a basalt organic coating for deep sea coupled pressure-fluid environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 704
孟凡帝, 高浩东, 刘 莉 等. 适用于深海压力-流体耦合环境的玄武岩有机防腐涂层的制备及性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 704
doi: 10.11902/1005.4537.2023.142
12 Wu W W, Li X Y, Dong H S, et al. Deposition and microstructural characterisation of GLC coatings on AZ31 magnesium alloy [J]. Plasma Process. Polym., 2009, 6: 473
13 Wang Z P, Chen P B, Ma Z W, et al. Effects of rare earth on electrochemical corrosion behavior of graphite-like carbon coatings [J]. Adv. Mater. Res., 2011, 199/200: 1978
14 Zhang J W, Zhou S G, Wang Y X, et al. Enhancing anti-corrosion and antifouling properties of Cu/GLC composite film for marine application [J]. Surf. Coat. Technol., 2019, 375: 414
15 Dos Santos A M M, Batista R J C, Martins L A M, et al. Corrosion and cell viability studies of graphite-like hydrogenated amorphous carbon films deposited on bare and nitrided titanium alloy [J]. Corros. Sci., 2014, 82: 297
16 Guan X Y, Wang Y X, Wang J F, et al. Adaptive capacities of chromium doped graphite-like carbon films in aggressive solutions with variable pH [J]. Tribol. Int., 2016, 96: 307
17 Gong Z B, Jia X L, Ma W, et al. Hierarchical structure graphitic-like/MoS2 film as superlubricity material [J]. Appl. Surf. Sci., 2017, 413: 381
18 Bai W Q, Xie Y J, Li L L, et al. Tribological and corrosion behaviors of Zr-doped graphite-like carbon nanostructured coatings on Ti6Al4V alloy [J]. Surf. Coat. Technol., 2017, 320: 235
19 Zhang Y H, Ma J, Jiang B L. Influence of Cr content on hardness and valence bond structure of graphite-like carbon coatings [J]. T. Mater. Heat. Treat., 2007, 28(4): 106
张永宏, 马 婕, 蒋百灵. Cr含量对类石墨碳涂层硬度及其价键结构的影响 [J]. 材料热处理学报, 2007, 28(4): 106
20 Loubière S, Laurent C, Bonino J P, et al. Elaboration, microstructure and reactivity of Cr3C2 powders of different morphology [J]. Mater. Res. Bull., 1995, 30: 1535
21 Li L, Guo P, Liu L L, et al. Metal buffer layer on structure, mechanical and tribological property of GLC films [J]. J. Inorg. Mater., 2018, 33: 331
doi: 10.15541/jim20170217
李 蕾, 郭 鹏, 刘林林 等. 金属过渡层类型对非晶碳膜结构性能的影响 [J]. 无机材料学报, 2018, 33: 331
22 Li L, Guo P, Liu L L, et al. Structural design of Cr/GLC films for high tribological performance in artificial seawater: Cr/GLC ratio and multilayer structure [J]. J. Mater. Sci. Technol., 2018, 34: 1273
doi: 10.1016/j.jmst.2017.12.002
23 Liu Y R, Du H, Zuo X, et al. Cr/GLC multilayered coating in simulated deep-sea environment: corrosion behavior and growth defect evolution [J]. Corros. Sci., 2021, 188: 109528
24 Liu Y R, Li S Y, Li H, et al. Controllable defect engineering to enhance the corrosion resistance of Cr/GLC multilayered coating for deep-sea applications [J]. Corros. Sci., 2022, 199: 110175
25 Li S Y, Li H, Ma G S, et al. Dense Cr/GLC multilayer coating by HiPIMS technique in high hydrostatic pressure: microstrusctural evolution and galvanic corrosion failure [J]. Corros. Sci., 2023, 225: 111618
26 Li S Y, Li H, Zhang Y, et al. Dense Al2O3 sealing inhibited high hydrostatic pressure corrosion of Cr/GLC coating [J]. npj Mater. Degrad., 2024, 8: 48
27 Liu Y R, Li S Y, Zhou X H, et al. Enhanced anti-tribocorrosion property of a-C film under high hydrostatic pressure by high power pulsed magnetron sputter (HiPIMS) [J]. J. Mater. Res. Technol., 2024, 28: 3052
28 Ma H Y, Liu R, Cui Y, et al. The effect law of different hydrostatic pressures on the failure of multilayer Cr/GLC coatings in 3.5wt% NaCl solution [J]. Corros. Sci., 2023, 217: 111120
29 Ma H Y, Qin P F, Cui Y, et al. Prediction of multilayer Cr/GLC coatings degradation in deep-sea environments based on integrated mechanistic and machine learning models [J]. Corros. Sci., 2023, 224: 111513
30 Song Y S, Liu R, Cui Y, et al. Stress corrosion behavior of Ni-Cr-Mo-V steel in 3.5%NaCl solution under the interaction of tensile stress and hydrostatic pressure [J/OL]. Acta Metall. Sin.
宋昱杉, 刘 叡, 崔 宇 等. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为 [J/OL]. 金属学报.
31 Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
32 Xiong X L, Ban X J, Yan Y, et al. Hydrostatic pressure effect on double layer capacity of iron [J]. J. Electroanal. Chem., 2020, 871: 114306
33 Ma H Y, Yang N, Cui Y, et al. Investigation of the passive film of nanocrystalline 304 stainless steel in 3.5wt%NaCl solution under hydrostatic pressure [J]. Electrochim. Acta, 2024, 481: 143981
34 Geng Z Z, Zhang Y Z, Du X J, et al. Synergistic effect of S2- and Cl- on corrosion and passivation behavior of 316L austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 797
耿真真, 张钰柱, 杜小将 等. S2-和Cl-对316L奥氏体不锈钢的腐蚀钝化行为的协同作用 [J]. 中国腐蚀与防护学报, 2024, 44: 797
doi: 10.11902/1005.4537.2023.236
35 Hu Q, Gao J Y, Shu S, et al. Corrosion behaviors of multilayer C/Cr/SS bipolar plates for proton exchange membrane fuel cells under dynamic potential polarization based on new european driving cycle [J]. Corros. Sci., 2023, 214: 111032
36 Wei J, Li H C, Liu L L, et al. Enhanced tribological and corrosion properties of multilayer ta-C films via alternating sp3 content [J]. Surf. Coat. Technol., 2019, 374: 317
37 Fu Y Q, Zhou F, Wang Q Z, et al. Electrochemical and tribocorrosion performances of CrMoSiCN coating on Ti-6Al-4V titanium alloy in artificial seawater [J]. Corros. Sci., 2020, 165: 108385
38 Ahn S H, Lee J H, Kim J G, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects [J]. Surf. Coat. Technol., 2004, 177/178: 638
[1] REN Mingze, DONG Lin, YANG Guanjun. Research Progress on Material and Structure Optimization of Environmental Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[2] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] ZHAO Lijia, CUI Xinyu, WANG Jiqiang, XIONG Tianying. Corrosion Behavior of Cold-sprayed B4C/Al Composite Coating in Boric Acid Solution[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[4] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[5] WANG Kun, ZOU Lanxin, GUO Lei, YAN Kai, YE Fuxing, LIU Hongli, GUO Hongbo. High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[6] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[7] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[8] YANG Xiaodong, LI Xue, YU Zheng, YANG Shasha, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
[9] LIANG Yuwei, WANG Jie, SONG Peng, HUANG Taihong, BAO Yuxu. Wear and Corrosion Resistance of FeCrMoSiB Amorphous Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[10] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] CAO Jingyi, ZHAO Yi, LIU Yanshuo, FANG Zhigang, JING Yuan, LI Liang, MENG Fandi. Preparation and Protective Properties of Superhydrophobic Modified Basalt/epoxy Coatings[J]. 中国腐蚀与防护学报, 2024, 44(6): 1476-1484.
[12] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[13] PANG Jie, LIU Xiangju, LIU Nazhen, HOU Baorong. Galvanic Corrosion of T2 Cu-alloy and Q235 Steel in Simulated Beishan Groundwater Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[14] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[15] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
No Suggested Reading articles found!