Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1145-1156    DOI: 10.11902/1005.4537.2023.377
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Failure Behavior of Printed Circuit Board in a Service Environment
LIU Yuanhai1, LI Yuzhu2, YU Dazhao3, MU Xianlian1, LIU Jie2()
1 China Special Vehicle Reserch Institute, Key Laboratory of Corrosion Protection and Control of Aviation Technology, Jingmen 448035, China
2 School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
3 School of Basic Sciences for Aviation, Naval Aviation University, Yantai 264000, China
Cite this article: 

LIU Yuanhai, LI Yuzhu, YU Dazhao, MU Xianlian, LIU Jie. Research Progress on Corrosion Failure Behavior of Printed Circuit Board in a Service Environment. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1145-1156.

Download:  HTML  PDF(3681KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Printed circuit board (PCB) was one of the indispensable basic components in the electronic system, once damaged will lead to the failure of the entire electronic system. Therefore, it was particularly important to understand the nature of corrosion failure of PCB in practical service. This paper summarized the main factors that lead to the corrosion failure of PCB, including the property factors related with materials and external environmental factors (temperature, relative humidity, corrosive gas, electric field, etc.), summarizing the advantages and disadvantages of different surface treatment processes, and concluding the synergistic effect of external environment factors on the corrosion failure mechanism of PCB. The main testing methods for corrosion failure research of PCB is summarized. The advantages and disadvantages of different testing methods in corrosion failure research of PCB were clarified, and the progress of common corrosion types of PCB in different service environments was summarized. Finally, the combination of environmental testing and simulation analysis was proposed to establish a PCB corrosion model that was more suitable for the actual service environment.

Key words:  printed circuit board      corrosion failure      environmental test      simulation analysis      electrical performance     
Received:  27 November 2023      32134.14.1005.4537.2023.377
ZTFLH:  TG172  
Fund: Taishan Scholar Project of Shandong Province(tsqn202306160);Science Fund of Shandong Laboratory of Advance Materials and Green Manufacturing at Yantai(AMGM2024F03)
Corresponding Authors:  LIU Jie, E-mail: liujie6573@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.377     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1145

ClassificationDesignation
Rigid plateCCIXPC、XXXPC、FR-1、FR-2、FR-3
CEMCEM-2、CEM-4、CEM-1、CEM-3、CEM-5
CCLG-10、G-11、FR-4、FR-5、PI、PTFE、BT、PPE(PPO)、CE, etc
Special substrateresin coated copper (RCC), metal substrate、ceramic substrate, etc
Flexible platePolyester resin copper clad laminate, polyimide resin copper clad laminate, etc
Table 1  Classification of PCB insulation materials
Fig.1  Relationships between 1/Rct and time at different temperatures[41]
Fig.2  Relationships between 1/Rct and time at 65oC and different humidities[47]
Fig.3  Predicted corrosion of PCB under the condition of 12 V and salt concentration of 1-30 µg/m3 [67]: (a) a via-hole pad diameter = 400 µm, (b) required life time = 10 years
Fig.4  SEM image of the defect existing in the gold-plated layer on PCB-ENIG (a) and cross section after 1 month (b)[82]
Fig.5  ECM corrosion models of PCB with different surface treatments[11,12]: (a) PCB-ImAg, (b) PCB-HASL, (c) PCB-Cu, (d) PCB-ENIG
Fig.6  Abnormal ECM phenomenon model of PCB-Cu at 12 V offset voltage[79]: (a) formation of soluble species, (b) complexation reaction under high concentrations of Cl-, (c) anodic deposition
1 Zhang M. Study on the corrosion behavior of printed circuit board and its influencing factor [D]. Xiamen: Xiamen University, 2008
张 敏. 印刷电路板的腐蚀行为及其影响因素研究 [D]. 厦门: 厦门大学, 2008
2 Guo H L. Study on corrosion inhibition of copper layer of printed circuit board by corrosion inhibitor [D]. Chongqing: Chongqing University, 2020
郭海亮. 缓蚀剂抑制印制电路板铜层腐蚀的研究 [D]. 重庆: 重庆大学, 2020
3 Tang M X. Study on the mechanism and application of acid electroplated copper plating additives for PCB [D]. Chongqing: Chongqing University, 2018
唐明星. 印制电路板酸性电镀铜电镀添加剂的应用及其机理研究 [D]. 重庆: 重庆大学, 2018
4 Wen Y N. Study on corrosion inhibitor for improving printed circuit board quality [D]. Chongqing: Chongqing University, 2020
文亚男. 缓蚀剂改善电路板品质的研究 [D]. 重庆: 重庆大学, 2020
5 Zhan G P, Gao X D. Corrosion behavior and mechanism of PCB-HASL in marine environment [J]. Environ. Technol., 2022, 40(1): 27
战贵盼, 高晓冬. 实验室环境下PCB-HASL腐蚀损伤行为与机理 [J]. 环境技术, 2022, 40(1): 27
6 Zhan G P, Tan X M, Peng Z G, et al. Corrosion damage behavior of printed circuit board in simulated marine environment [J]. Equip. Environ. Eng., 2021, 18(12): 65
战贵盼, 谭晓明, 彭志刚 等. 实验室模拟海洋环境下印制电路板腐蚀损伤行为 [J]. 装备环境工程, 2021, 18(12): 65
7 Wu P. Corrosion simulation of electronic materials in atmospheric environment [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022
吴 鹏. 电子材料在大气环境下的腐蚀模拟 [D]. 南京: 南京邮电大学, 2022
8 Singh M B, Gabriel B I, Venkatraman M S, et al. Theory of impedance for initial corrosion of metals under a thin electrolyte layer: a coupled charge transfer-diffusion model [J]. J. Chem. Sci., 2022, 134: 32
9 Yan L D, Xiao K, Yi P, et al. The corrosion behavior of PCB-ImAg in industry polluted marine atmosphere environment [J]. Mater. Des., 2017, 115: 404
10 Salahinejad E, Eslami-Farsani R, Tayebi L. Corrosion failure analysis of printed circuit boards exposed to H2S-containing humid environments [J]. Eng. Fail. Anal., 2017, 79: 538
11 Ding K K, Li X G, Xiao K, et al. Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2446
12 Yi P, Xiao K, Ding K K, et al. Electrochemical migration behavior of copper-clad laminate and electroless nickel/immersion gold printed circuit boards under thin electrolyte layers [J]. Materials (Basel), 2017, 10: 137
13 Yuan M. Research on tropical ocean environmental worthiness of printed circuit board protection technology [D]. Guangzhou: South China University of Technology, 2015
袁 敏. 印制电路板防护工艺热带海洋环境适应性研究 [D]. 广州: 华南理工大学, 2015
14 Zhu L. Key technique & failure analysis in telecommunication PCB material [D]. Hangzhou: Zhejiang University, 2014
竺 琳. PCB材料在通讯设备中的关键技术研究及失效分析 [D]. 杭州: 浙江大学, 2014
15 Ding K K, Xiao K, Zou S W, et al. Effect of dilute H2SO4 droplets on initial corrosion behavior of PCB [J]. Chin. J. Nonferrous Met., 2014, 24: 2565
丁康康, 肖葵, 邹士文 等. 稀H2SO4液滴对PCB初期腐蚀行为的影响 [J]. 中国有色金属学报, 2014, 24: 2565
16 Yi P, Ding K K, Song W F, et al. Effect of salt spray environment on the corrosion behavior of PCB-HASL and PCB-ENIG [J]. Chin. J. Eng., 2015, 37: 1601
易 盼, 丁康康, 宋维锋 等. 盐雾对喷锡和化金印制电路板腐蚀行为的影响 [J]. 工程科学学报, 2015, 37: 1601
17 Wang J R, Bai Z H, Xiao K, et al. Influence of atmospheric particulates on initial corrosion behavior of printed circuit board in pollution environments [J]. Appl. Surf. Sci., 2019, 467-468: 889
18 Zheng P F, Hu G H, Lu P P, et al. Effect of modification of electrolessly plated nickel coating on immersion gold plating thereon for PCB [J]. Electroplat. Finish., 2022, 41: 1256
郑沛峰, 胡光辉, 路培培 等. PCB化学镀镍层改性对置换镀金的影响 [J]. 电镀与涂饰, 2022, 41: 1256
19 Zhao W C, Feng R, Wang X W, et al. Relationship between microstructure and etching performance of 12 μm thick rolled copper foil [J]. J. Mater. Res. Technol., 2022, 21: 1666
20 Feng R, Zhao W C, Sun Y M, et al. Softened microstructure and properties of 12 μm thick rolled copper foil [J]. Materials (Basel), 2022, 15: 2249
21 Xiao K, Gao X, Yan L D, et al. Atmospheric Corrosion Factors of Printed Circuit Boards in a dry-heat desert environment: salty dust and diurnal temperature difference [J]. Chem. Eng. J., 2018, 336: 92
22 Liao X N, Cao F H, Zheng L Y, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J]. Corros. Sci., 2011, 53: 3289
23 Mousavi M, Kosari A, Mol J M C, et al. Localised aqueous corrosion of electroless nickel immersion gold-coated copper [J]. Corros. Eng. Sci. Technol., 2022, 57: 520
24 Jiang B, Jiang S L, Ma A L, et al. Erosion-corrosion behavior of electroless Ni-P coating on copper-nickel alloy in 3.5 wt.% sodium chloride solution [J]. J. Mater. Eng. Perform., 2014, 23: 230
25 Yi P, Xiao K, Ding K K, et al. Surface failure mechanism of PCB-ENIG in typical outdoor atmospheric environments [J]. Mater. Res. Bull., 2017, 91: 179
26 Collins M N, Reid M, Dalton E, et al. Corrosion under mixed flowing gas conditions of various connector coatings [J]. Mater. Corros., 2013, 64: 7
27 Yi P, Xiao K, Ding K K, et al. In situ investigation of atmospheric corrosion behavior of PCB-ENIG under adsorbed thin electrolyte layer [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1146
28 Salahinejad E, Farsani R E, Tayebi L. Synergistic galvanic-pitting corrosion of copper electrical pads treated with electroless nickel-phosphorus/immersion gold surface finish [J]. Eng. Fail. Anal., 2017, 77: 138
29 Murugan V K, Jia Z G, Syaranamual G J, et al. An investigation into different nickel and nickel–phosphorus stacked thin coatings for the corrosion protection of electrical contacts [J]. Surf. Coat. Technol., 2016, 300: 95
30 Lee Y H, Choi S R, Ko S J, et al. Effect of benzotriazole on the prevention of electroless nickel-immersion gold treated copper corrosion [J]. J. Phys. Chem. Solids, 2023, 176: 111226
31 Kim B K, Lee S J, Kim J Y, et al. Origin of surface defects in PCB final finishes by the electroless nickel immersion gold process [J]. J. Electron. Mater., 2008, 37: 527
32 Lin H M, Ho C Y, Chen W L, et al. Interfacial reaction and mechanical evaluation in multi-level assembly joints with ENEPIG under bump metallization via drop and high speed impact test [J]. Microelectron. Reliab., 2015, 55: 231
33 Arra M, Shangguan D K, Xie D J, et al. Study of immersion silver and tin printed-circuit-board surface finishes in lead-free solder applications [J]. J. Electron. Mater., 2004, 33: 977
34 Huang H L, Guo X M, Bu F R, et al. Corrosion behavior of immersion silver printed circuit board copper under a thin electrolyte layer [J]. Eng. Fail. Anal., 2020, 117: 104807
35 Zhang S N, Osterman M, Shrivastava A, et al. The influence of H2S exposure on immersion-silver-finished PCBs under mixed-flow gas testing [J]. IEEE Trans. Device Mater. Reliab., 2010, 10: 71
36 Yi P, Xiao K, Dong C F, et al. Effects of mould on electrochemical migration behaviour of immersion silver finished printed circuit board [J]. Bioelectrochemistry, 2018, 119: 203
doi: S1567-5394(17)30291-8 pmid: 29055860
37 Feng Y L, Bai Z H, Yao Q, et al. Corrosion behavior of printed circuit boards in tropical marine atmosphere [J]. Int. J. Electrochem. Sci., 2019, 14: 11300
38 Goh Y S, Haseeb A S M A, Basirun W J, et al. Effects of concentration of adipic acid on the electrochemical migration of tin for printed circuit board assembly [J]. J. Electron. Mater., 2023, 52: 2236
39 Zhong X K, Zhang G A, Qiu Y B, et al. The corrosion of tin under thin electrolyte layers containing chloride [J]. Corros. Sci., 2013, 66: 14
40 Song X X, Wang K Y, Chen Z, et al. Electrochemical migration behavior on FR-4 printed circuit board with different surface finishes [J]. J. Electron. Mater., 2023, 52: 6121
41 Huang H L. The corrosion behaviour and mechanism of PCB-Cu under thin electrolyte layer [D]. Wuhan: Huazhong University of Science and Technology, 2011
黄华良. 薄层液膜下PCB-Cu的腐蚀行为及机理研究 [D]. 武汉: 华中科技大学, 2011
42 Wan S. Corrosion, Protection and monitoring technologies of electronic copper in simulating marine atmosphere [D]. Wuhan: Huazhong University of Science and Technology, 2020
万 闪. 电子铜材在模拟海洋大气中的腐蚀与防护及监测技术研究 [D]. 武汉: 华中科技大学, 2020
43 Huang H L, Guo X P, Zhang G A, et al. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1700
44 Zhong X K, Yu S Y, Chen L J, et al. Test methods for electrochemical migration: a review [J]. J. Mater. Sci. Mater. Electron., 2017, 28: 2279
45 Ma X Z, Meng L D, Cao X K, et al. Influence of Co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
46 Zhan G P, Zhang A Q. Corrosion protection and control technology of airborne electronic equipment in marine environment [J]. Ship Electron. Eng., 2022, 42(4): 181
战贵盼, 张安琪. 海洋环境下机载电子设备腐蚀防护与控制技术 [J]. 舰船电子工程, 2022, 42(4): 181
47 Huang H L, Dong Z H, Chen Z Y, et al. The Effects of Cl- ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1230
48 Vogel G. Creeping corrosion of copper on printed circuit board assemblies [J]. Microelectron. Reliab., 2016, 64: 650
49 Zhang R, Zhang J S, Schmidt R, et al. Effects of moisture content, temperature and pollutant mixture on atmospheric corrosion of copper and silver and implications for the environmental design of data centers (RP-1755) [J]. Sci. Technol. Built Environ., 2020, 26: 567
50 Zou S W, Li X G, Dong C F, et al. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment [J]. Electrochim. Acta, 2013, 114: 363
51 Huang H L, Bu F R. The influence of different locations on copper corrosion with different external electric fields under a chloride-containing thin electrolyte layer [J]. Corros. Eng. Sci. Technol., 2019, 54: 257
52 Huang H L, Pan Z Q, Guo X P, et al. Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 285
53 Yu X Y, Wang Z H, Lu Z H. In situ investigation of atmospheric corrosion behavior of copper under thin electrolyte layer and static magnetic field [J]. Microelectron. Reliab., 2020, 108: 113630
54 Li M W, Fu Y, Li M, et al. Research on salt fog corrosion damage law of typical aircraft printed circuit board [J]. Equip. Environ. Eng., 2012, 9(6): 29
李敏伟, 傅 耘, 李 明 等. 典型航空印刷电路板盐雾环境腐蚀损伤规律研究 [J]. 装备环境工程, 2012, 9(6): 29
55 Liu C C, Zhang H B, Zhao L H, et al. Correlation between marine environmental test and laboratory environmental test of printed circuit board [J]. Equip. Environ. Eng., 2018, 15(2): 74
刘成臣, 张洪彬, 赵连红 等. 印制电路板海洋环境试验与实验室环境试验相关性研究 [J]. 装备环境工程, 2018, 15(2): 74
56 Yuan M, Zhang Z, Guan X G, et al. Performance of printed circuit board coating in marine environment [J]. Electron. Prod. Reliab. Environ. Test., 2020, 38(2): 1
袁 敏, 张 铮, 关学刚 等. 海洋环境下印制电路板涂层的性能表现 [J]. 电子产品可靠性与环境试验, 2020, 38(2): 1
57 Li Q, Chen X H, Hu T, et al. Corrosion behavior of an airborne PCB in simulated marine atmospheric environment [J]. J. Naval Aviat. Univ., 2022, 37: 486
李 茜, 陈星昊, 胡 涛 等. 某机载印制电路板在模拟海洋大气环境中腐蚀行为 [J]. 海军航空大学学报, 2022, 37: 486
58 Jia R C, Li M, Zhu M, et al. Two laboratory methods to simulate the corrosive behavior of aviation circuit boards in the shipboard platform environment [J]. J. Naval Aviat. Univ., 2022, 37: 469
贾润川, 李 明, 朱 蒙 等. 两种实验室方法模拟舰载平台环境下航空电路板的腐蚀行为 [J]. 海军航空大学学报, 2022, 37: 469
59 Zhan G P, Han Y H, Tan X M, et al. Corrosion behavior and mechanism of PCB-HASL in simulated marine atmospheric environment [J]. Surf. Technol., 2022, 51(5): 245
战贵盼, 韩永恒, 谭晓明 等. 模拟海洋大气环境下PCB-HASL的腐蚀行为与机理 [J]. 表面技术, 2022, 51(5): 245
60 Tan X M, Zhan G P, Zhang D F, et al. Effects of water-displacing corrosion preventive compound on corrosion behavior of printed circuit board and mechanism [J]. Surf. Technol., 2021, 50(9): 311
谭晓明, 战贵盼, 张丹峰 等. 水置换型缓蚀剂对印制电路板腐蚀行为的影响及作用机理 [J]. 表面技术, 2021, 50(9): 311
61 Zhao P, Pecht M. Mixed flowing gas studies of creep corrosion on plastic encapsulated microcircuit packages with noble metal pre-plated leadframes [J]. IEEE Trans. Device Mater. Reliab., 2005, 5(2): 268
62 Cao W, Ji K Z, Hu Z, et al. Corrosion behaviour simulation of 2A12 aluminum alloy in marine environment [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 1218
曹 玮, 纪凯志, 胡 志 等. 2A12航空铝合金在海洋环境中腐蚀行为仿真研究 [J]. 特种铸造及有色合金, 2020, 40: 1218
63 Ji K Z. Modeling and simulation of electrochemical corrosion of 2A12 aluminum alloy in marine atmospheric environment [D]. Nanchang: Nanchang University, 2021
纪凯志. 海洋大气环境下2A12铝合金电化学腐蚀建模与仿真 [D]. 南昌: 南昌大学, 2021
64 Feng Y F, Fang Z G, Zhao Y. Status, Challenge and prospect of the technology of corrosion simulation on navy equipment [J]. Mater. China, 2020, 39(3): 179
冯亚菲, 方志刚, 赵 伊. 海军装备腐蚀仿真技术现状、挑战和展望 [J]. 中国材料进展, 2020, 39(3): 179
65 Snihirova D, Höche D, Lamaka S, et al. Galvanic corrosion of Ti6Al4V-AA2024 joints in aircraft environment: modelling and experimental validation [J]. Corros. Sci., 2019, 157: 70
doi: 10.1016/j.corsci.2019.04.036
66 Li W C, Liu K N, Wu J S, et al. Numerical simulation of carbon steel atmospheric corrosion under varying electrolyte-film thickness and corrosion product porosity [J]. npj Mater. Degrad., 2023, 7: 3
67 Kim S I, Kim D J, Kim D H, et al. Corrosion lifetime estimation of printed circuit board in marine atmosphere environment using multiphysics simulation [J]. Int. J. Precis. Eng. Manuf.-Green Technol., 2023, 10: 789
68 Zhou Z D, Chen J H, Yu C, et al. Failure analysis of printed circuit board solder joint under thermal shock [J]. Coatings, 2023, 13(3): 572
69 Huo W. Thermal simulation analysis of internal control circuit board of steering gear box based on COMSOL three-dimensional simulation software [J]. Comput. Intell. Neurosci., 2022, 2022: 3006349
70 Bahrebar S, Ambat R. Investigation of critical factors effect to predict leakage current and time to failure due to ECM on PCB under humidity [J]. Microelectron. Reliab., 2021, 127: 114418
71 Xue P, Bahman A S, Iannuzzo F, et al. Prediction of the electrochemical migration induced failure on power PCBs under humidity condition-A case study [J]. Microelectron. Reliab., 2022, 139: 114796
72 Liu J, Xu G C, Ren L, et al. Simulation analysis of ultrasonic detection for resistance spot welding based on COMSOL Multiphysics [J]. Int. J. Adv. Manuf. Technol., 2017, 93: 2089
73 Fallahnezhad K, Oskouei R H, Taylor M. Development of a fretting corrosion model for metallic interfaces using adaptive finite element analysis [J]. Finite Elem. Anal. Des., 2018, 148: 38
74 Liu Q, Yu D Z, Wang L, et al. Acceleration test and corrosion simulation of aviation electrical connectors in marine environment [J]. Equip. Environ. Eng., 2021, 18(11): 18
刘 琦, 郁大照, 王 琳 等. 航空电连接器海洋环境加速试验与腐蚀仿真研究 [J]. 装备环境工程, 2021, 18(11): 18
75 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. verification of the experimental technique [J]. Corros. Sci., 1990, 30: 681
76 Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II. experimental results [J]. Corros. Sci., 1990, 30: 697
77 Newbury D E, Ritchie N W M. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? [J]. Scanning, 2013, 35: 141
doi: 10.1002/sca.21041 pmid: 22886950
78 Yang W C, Liu D F, Gao X, et al. The application of X-ray photoelectron spectroscopy [J]. China Port Sci. Technol., 2022, 4(2): 30
杨文超, 刘殿方, 高欣 等. X射线光电子能谱应用综述 [J]. 中国口岸科学技术, 2022, 4(2): 30
79 Yi P, Dong C F, Xiao K, et al. Surface failure analysis of a field-exposed copper-clad plate in a marine environment with industrial pollution [J]. Appl. Surf. Sci., 2017, 399: 608
80 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
81 Smith N S, Notte J A, Steele A V. Advances in source technology for focused ion beam instruments [J]. MRS Bull., 2014, 39: 329
82 Xiao K, Bai Z H, Yan L D, et al. Microporous corrosion behavior of gold-plated printed circuit boards in an atmospheric environment with high salinity [J]. J. Mater. Sci. Mater. Electron., 2018, 29: 8877
83 Yuan M, Zou F, Wang Z. Analysis on tropical ocean environment effects to performance parameters of printed circuit board [J]. Environm. Technol., 2014, 32(3): 21
袁 敏, 邹 凡, 王 忠. 热带海洋环境条件对印制电路板性能参数的影响分析 [J]. 环境技术, 2014, 32(3): 21
84 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
85 Tang J, Wang Y, Jing P Y. Typical corrosion and protection measures against airborne contaminants on circuit boards [J]. Equip. Environ. Eng., 2019, 16(7): 64
唐 俊, 王 勇, 景鹏渊. 电路板的大气污染物典型腐蚀分析及防护 [J]. 装备环境工程, 2019, 16(7): 64
86 Jung J Y, Lee S B, Joo Y C, et al. Anodic dissolution characteristics and electrochemical migration lifetimes of Sn solder in NaCl and Na2SO4 solutions [J]. Microelectron. Eng., 2008, 85: 1597
87 Chen X C. Challenges and threat of creep corrosion to cloud computing and electronic products [J]. Electron. Process Technol., 2013, 34(2): 86
陈星慈. 电路板爬行腐蚀对云算及电子产品的挑战与威胁 [J]. 电子工艺技术, 2013, 34(2): 86
[1] Yan SU,Lunwu ZHANG,Yong ZHONG. Marine Atmospheric Corrosion Behavior of 5A90 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2016, 36(3): 260-266.
[2] CAI Jianping, LIU Ming, AN Yinghui. DEGRADATION KINETICS OF PROTECTIVE COATING FOR ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(3): 256-261.
[3] YANG Genzhu, LI Qinghua, LIU Guoshuai, WANG Bo, LIU Jie, XIONG Jinping, HE Shaoping, LU Zhengliang. CORROSION OF TREMIE PIPE OF W0714 FILM EVAPORATOR OF HEXANOLACTAM[J]. 中国腐蚀与防护学报, 2011, 31(6): 488-492.
[4] YAN Jie LIU Lihong JI Chunyang HUANG Ruiyi. DEVELOPMENT OF NATURAL ATMOSPHERIC ENVIRONMENTAL TEST IN THE WORLD[J]. 中国腐蚀与防护学报, 2009, 29(1): 69-75.
[5] ;. Study on Corrosion Failure Mechanism of Microarc Oxidation Coatings Formed on AZ91D Magnesium Alloy[J]. 中国腐蚀与防护学报, 2008, 28(4): 219-224 .
[6] Jianping Cai; Ming Liu; Zhenhua Luo; Zhihui Tang; Bin Li. Study on Accelerated Tests for Aluminum Alloy Atmospheric Corrosion[J]. 中国腐蚀与防护学报, 2005, 25(5): 262-266 .
[7] ;. CORROSION FAILURE OF COMPLEX ELECTRICAL CONDUCTIVE MATIERALS FILLED WITH COPPER AND SILVER POWDERS[J]. 中国腐蚀与防护学报, 2005, 25(4): 245-249 .
[8] Guofu Ou; Zuchao Zhu; Jian Yang; Leqin Wang. CORROSION MECHANISM FPR HYDROGENATION SYSTEM EFFLUENT AIR COOLERS[J]. 中国腐蚀与防护学报, 2005, 25(1): 61-64 .
No Suggested Reading articles found!