Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 462-470    DOI: 10.11902/1005.4537.2023.101
Current Issue | Archive | Adv Search |
Corrosion Resistance and Mechanism of CSA-OPC Based Repair Materials in Artificial Seawaters
LI Guoxin(), CHEN Huaxiang, WU Yangfan
School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

LI Guoxin, CHEN Huaxiang, WU Yangfan. Corrosion Resistance and Mechanism of CSA-OPC Based Repair Materials in Artificial Seawaters. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 462-470.

Download:  HTML  PDF(5223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Several sulfoaluminate cement-ordinary Portland cement-based repair materials (CSA-OPC) were prepared, then their corrosion resistance in artificial seawaters containing NaCl, NaCl+Na2SO4, NaCl + Na2SO4 + MgCl2 respectively were assessed via dry-wet cycle test, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The study focuses on the evolution of mass, compressive strength, bond strength and Cl- content of the CSA-OPC with the variation of OPC content and corrosion process. The results show that in the test conditions with solutions of NaCl, NaCl + Na2SO4, NaCl + Na2SO4 + MgCl2, an appropriate amount of OPC incorporation can significantly improve the corrosion resistance of CSA in artificial seawaters. When the content of OPC is 20%-30%, the mass change, compressive strength, bond strength and Cl- combination ability of CSA-OPC are the best. The Cl- infiltrated into the CSA-OPC materials are trapped through the formation of Friedel's salt, while the SO42- may inhibit the combination of Cl-, and Mg2+ may reduce the combination rate of Cl- by consuming more OH-.

Key words:  ocean tidal area      ion coupled erosion      repair material      sulphoaluminate cement      ordinary Portland cement     
Received:  04 April 2023      32134.14.1005.4537.2023.101
ZTFLH:  TU525  
Corresponding Authors:  LI Guoxin, E-mail: liguoxin@xauat.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.101     OR     https://www.jcscp.org/EN/Y2024/V44/I2/462

MaterialCaOAl2O3SiO2Fe2O3SO3MgOK2ONa2OTiO2Loss
CSA42.2536.466.562.288.921.840.180.240.580.69
OPC61.235.8422.323.152.002.020.390.15-2.90
Table 1  Chemical compositions of CSA and OPC
Material

S

m2·kg-1

t0

min

t1

min

Flexural strength / MPaCompressive strength / MPa
1 d3 d7 d28 d1 d3 d7 d28 d
CSA42634554.80-6.50-36-49.20-
OPC34563115-5.80-9.20-23.50-49.60
Table 2  Performance parameters of CSA and OPC
NumberBinding materialSandW/BWater reducer
CSAOPC
CSA1010.3500.004
90%CSA-10%OPC0.9000.10010.3500.004
80%CSA-20%OPC0.8000.20010.3500.004
70%CSA-30%OPC0.7000.30010.3500.004
60%CSA-40%OPC0.6000.40010.3500.004
Table 3  Mix proportions of cement mortars
SolutionNaClNa2SO4MgCl2·6H2OCaCl2KClNaHCO3KBrc(Cl-)
B24.534.095.201.170.690.200.1017.76
N146.46------88.82
N+S146.4620.45-----88.82
N+S+M131.5220.4526----88.82
Table 4  Chemical compositions of corrosion solutions
Fig.1  Sampling diagram for the determination of Cl- content
Fig.2  Mass changes of CSA-OPC system during dry-wet cyclic test for 90 cycles in the corrosion solutions of N (a), N + S (b) and N + S + M (c)
Fig.3  Compressive strengths of CSA-OPC system during dry-wet cyclic test for 90 cycles in the corrosion solutions of N (a), N + S (b) and N + S + M (c)
Fig.4  Bond strengths of CSA-OPC system during dry-wet cyclic test for 90 cycles in the corrosion solutions of N (a), N + S (b) and N + S + M (c)
Fig.5  Total contents of Cl- for CSA-OPC system during dry-wet cyclic test for 90 cycles in the corrosion solutions of N (a), N + S (b) and N + S + M (c)
Fig.6  Combination rates of Cl- for CSA-OPC system after dry-wet cyclic test for 90 cycles in the corrosion solutions of N, N + S and N + S + M
Fig.7  XRD patterns of 80%CSA-20%OPC system (a) and 70%CSA-30%OPC system (b) after dry-wet cyclic test for 45 and 90 cycles in the corrosion solutions of N, N+S and N+S+M
Fig.8  Morphologies of 80%CSA-20%OPC system after dry-wet cyclic test for 45 (a) and 90 (b) cycles in NaCl corrosion solution
Fig.9  Morphologies of 80%CSA-20%OPC system after dry-wet cyclic test for 45 (a) and 90 (b) cycles in NaCl + Na2SO4 corrosion solution
Fig.10  Morphologies of 70%CSA-30%OPC system after dry-wet cyclic test for 45 (a) and 90 (b) cycles in NaCl + Na2SO4 + MgCl2 corrosion solution
1 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43: 87
2 Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42: 135
3 Han X Q. Effect of coupling of seawater and dry-wet cycling on the resistance of concrete to chloride penetration[D]. Hangzhou: Zhejiang University, 2019
韩学强. 海水和干湿循环耦合作用对混凝土抗氯离子渗透的影响[D]. 杭州: 浙江大学, 2019
4 Zhou P. Effects of external components on the microstructure of cement-based cement paste under seawater erosion[D]. Wuhan: Wuhan University of Technology, 2020
周 鹏. 海水侵蚀环境下外掺组分对水泥基胶凝浆体微结构的影响[D]. 武汉: 武汉理工大学, 2020
5 Shi Z G, Geiker M R, Lothenbach B, et al. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cem. Concr. Compos., 2017, 78: 73
doi: 10.1016/j.cemconcomp.2017.01.002
6 Zhang X J. The microstructure formation and evolution of C-S-H gel in cement paste under the attack of sulfate in weak alkaline[D]. Hefei: Anhui Jianzhu University, 2019
张晓佳. 弱碱环境下硫酸盐侵蚀水泥石中C-S-H凝胶结构的形成与演变[D]. 合肥: 安徽建筑大学, 2019
7 Hou B R, Zhang D, Wang P. Marine corrosion and protection: current status and prospect[J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
侯保荣, 张 盾, 王鹏. 海洋腐蚀防护的现状与未来[J]. 中国科学院院刊, 2016, 31: 1326
8 Zhang Z D, Scherer G W. Measuring chemical shrinkage of ordinary Portland cement pastes with high water-to-cement ratios by adding cellulose nanofibrils[J]. Cem. Concr. Compos., 2020, 111: 103625
doi: 10.1016/j.cemconcomp.2020.103625
9 Jiang X L. Study on the Cl- binding capacity of sulphoaluminate cement with Cl- incorporation and its evolution during service[D]. Shenzhen: Shenzhen University, 2019
江雪雷. 硫铝酸盐水泥对内掺Cl-的固结能力及在服役过程中演化规律的研究[D]. 深圳: 深圳大学, 2019
10 Huang Y Q. Research on the influence of seawater on the properties of sulphoaluminate cement concrete[D]. Wuhan: Wuhan University of Technology, 2016
黄有强. 海水对硫铝酸盐水泥混凝土性能的影响研究[D]. 武汉: 武汉理工大学, 2016
11 Zhang J J, Ye C B, Tan H B, et al. Potential application of Portland cement-sulfoaluminate cement system in precast concrete cured under ambient temperature[J]. Constr. Build. Mater., 2020, 251: 118869
doi: 10.1016/j.conbuildmat.2020.118869
12 Zhang J J, Li G X, Ye W T, et al. Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement[J]. Constr. Build. Mater., 2018, 186: 1144
doi: 10.1016/j.conbuildmat.2018.08.008
13 Li G X, Bai Z H, Zhang G, et al. Study on properties and degradation mechanism of calcium sulphoaluminate cement-ordinary Portland cement binary repair material under seawater erosion[J]. Case Stud. Constr. Mater., 2022, 17: e01440
14 Gong H. Effect of multiple ions on chloride ion transport in mortar under marine environment[D]. Harbin: Harbin Institute of Technology, 2019
龚 豪. 海洋环境下多种离子对氯离子在砂浆中传输的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019
15 Zou D J, Qin S S, Liu T J, et al. Chloride ion diffusion in cement mortar in multi-ion solutions with various ions[J]. J. Chin. Ceram. Soc., 2020, 48: 1817
邹笃建, 覃珊珊, 刘铁军 等. 多离子溶液浸泡环境下氯离子在砂浆中的扩散性能[J]. 硅酸盐学报, 2020, 48: 1817
16 Bertola F, Gastaldi D, Irico S, et al. Behavior of blends of CSA and Portland cements in high chloride environment[J]. Constr. Build. Mater., 2020, 262: 120852
doi: 10.1016/j.conbuildmat.2020.120852
17 Zang W J. Study on the interaction of cementitious materials and various aggressive media in the South China Sea environment[D]. Nanjing: Southeast University, 2018
臧文洁. 南海环境多种腐蚀性介质与水泥基材料的交互作用研究[D]. 南京: 东南大学, 2018
18 Yuan J, Liu Y, Tan Z C, et al. Investigating the failure process of concrete under the coupled actions between sulfate attack and drying-wetting cycles by using X-ray CT[J]. Constr. Build. Mater., 2016, 108: 129
doi: 10.1016/j.conbuildmat.2016.01.040
19 Li W W, Jiang Z L, Lu M Y, et al. Effects of seawater, NaCl, and Na2SO4 solution mixing on hydration process of cement paste[J]. J. Mater. Civ. Eng., 2021, 33: 04021057
20 Tang S W, Yuan J H, Cai R J, et al. Continuous monitoring for leaching of calcium sulfoaluminate cement pastes incorporated with ZnCl2 under the attacks of chloride and sulfate[J]. Chemosphere, 2019, 223: 91
doi: 10.1016/j.chemosphere.2019.02.047
21 Gao M, Liu J H, Wu A X, et al. Corrosion and deterioration mechanism of rich-water filling materials in typical chloride salt environment[J]. J. Cent. South Univ. (Sci. Technol.), 2016, 47: 2776
高 萌, 刘娟红, 吴爱祥 等. 典型氯盐环境中富水充填材料腐蚀及劣化机理[J]. 中南大学学报(自然科学版), 2016, 47: 2776
22 Park S, Jeong Y, Moon J, et al. Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes[J]. J. Build. Eng., 2021, 34: 101880
23 Cheng S K, Shui Z H, Gao X, et al. Degradation mechanisms of Portland cement mortar under seawater attack and drying-wetting cycles[J]. Constr. Build. Mater., 2020, 230: 116934
doi: 10.1016/j.conbuildmat.2019.116934
24 Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: a fresh look: Part 2. Proposed mechanisms[J]. Cem. Concr. Res., 2003, 33: 341
doi: 10.1016/S0008-8846(02)00958-4
25 Li G X, Wang W Z, Zhang G. Effects of slag on the degradation mechanism of ordinary Portland cement-calcium aluminate cement-gypsum ternary binder under the multiple erosive ions[J]. Constr. Build. Mater., 2022, 324: 126661
doi: 10.1016/j.conbuildmat.2022.126661
26 Cheng S K, Shui Z H, Gao X, et al. Degradation progress of Portland cement mortar under the coupled effects of multiple corrosive ions and drying-wetting cycles[J]. Cem. Concr. Compos., 2020, 111: 103629
doi: 10.1016/j.cemconcomp.2020.103629
27 Cai G C, Zhao J. Application of sulphoaluminate cement to repair deteriorated concrete members in chloride ion rich environment-A basic experimental investigation of durability properties[J]. KSCE J. Civ. Eng., 2016, 20: 2832
doi: 10.1007/s12205-016-0130-4
28 Cheng S K, Shui Z H, Sun T, et al. Synergistic effects of sulfate and magnesium ions on chloride diffusion behaviors of Portland cement mortar[J]. Constr. Build. Mater., 2019, 229: 116878
doi: 10.1016/j.conbuildmat.2019.116878
No related articles found!
No Suggested Reading articles found!