Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (6): 1392-1398    DOI: 10.11902/1005.4537.2022.335
Current Issue | Archive | Adv Search |
Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel
REN Wankai, LIAN Zhouyang(), ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
Cite this article: 

REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2023, 43(6): 1392-1398.

Download:  HTML  PDF(4183KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of main components of ammonia desulfurization slurry on the development stage of localized corrosion for 304 stainless steel was studied by means of constant voltage occlusion battery and long-term static pitting corrosion test aiming to simulate the real local corrosion, as well as XPS and UV-VIS spectroscopy to characterize corrosion products and solutions. The results showed that low concentration (NH4)2SO4 in ammonia desulfurization slurry can promote the effect on localized corrosion development of 304 stainless steel, while high concentration can inhibit it. With the increase of Cl- concentration, the localized corrosion was intensified. The complex compounds on the surface resulted from the interaction of F- and metal ions, while the competitive migration effect with Cl- made the presence of F- have a certain inhibitory effect on the localized corrosion of stainless steel.

Key words:  ammonia desulfurization      304 stainless steel      localized corrosion      analog occlusion battery      simulate static pitting corrosion     
Received:  28 October 2022      32134.14.1005.4537.2022.335
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(21676144)
Corresponding Authors:  LIAN Zhouyang, E-mail: lianzy@njtech.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.335     OR     https://www.jcscp.org/EN/Y2023/V43/I6/1392

Fig.1  Schematic diagram of a local corrosion simulation occlusion battery
Fig.2  Schematic diagrams of 304 stainless steel specimen and static simulation pitting test device
Fig.3  Changes in system power consumption (a) and corrosion amount of internal electrode (b) at different mass fractions of ammonium sulfate
Fig.4  Changes of pitting corrosion amount of 304 stainless steel at different mass fractions of ammonium sulfate
Fig.5  Changes in system power consumption (a), internal electrode corrosion amount (b), dissolved oxygen in occlusion zone(c) and pH (d) at different Cl- concentrations
Fig.6  Changes in the pitting corrosion amount of 304 stainless steel at different Cl- concentrations
Fig.7  Changes in system power consumption (a), corrosion amount of internal electrode (b) and pH in occlusion area (c) at different F- concentrations
F- concentration mol·L-1Ionic transporting quantity /×10-3 mol·L-1Corrosion rate / mm·a-1
ΔF-ΔCl-
00120.53237.22
0.05-22.6466.98165.89
0.10-32.6553.87142.33
0.15-27.1646.56110.77
0.2-23.4542.12104.84
0.2564.6330.0331.41
0.375.3627.860.251
Table 1  Comparison of data at different initial F- concentrations
Fig.8  Changes in the pitting corrosion amount of 304 stainless steel at different F- concentrations
Fig.9  XPS spectra of internal corrosion products of occlusion battery: (a) survey, (b) Fe 2p, (c) Cr 2p
Fig.10  UV-VIS absorption spectra of internal solution after occlusion closed cell test: (a) 0.1 mol/L Cl- with different F- concentration, (b) different Cl- and F- concentration
1 Li J G, Zhu F H, Sun X L. Current status and challenges of atmospheric pollution prevention and control of thermal power plants in China [J]. Elect. Power, 2018, 51(6): 2
郦建国, 朱法华, 孙雪丽. 中国火电大气污染防治现状及挑战 [J]. 中国电力, 2018, 51(6): 2
2 Qu Z C. Analysis and countermeasures of comprehensive advantages and existing problems of flue gas ammonia desulfurization technology [J]. Sulph. Acid Ind., 2022, (2): 1
屈战成. 烟气氨法脱硫技术的综合优势和存在问题分析及对策 [J]. 硫酸工业, 2022, (2): 1
3 Liu X W. Progress of desulfurization and denitration technology of flue gas in China [J]. IOP Conf. Ser. Earth Environ. Sci., 2019, 242: 042010
4 Fu Z H, Xu J H, Wang D, et al. Corrosion of Q235 carbon steel in ammonia-based flue gas desulfurization slurry [J]. Corros. Sci. Prot. Technol., 2019, 31(5): 521
付志浩, 徐佳欢, 汪 丹 等. 烟道气氨法脱硫液对Q235碳钢腐蚀研究 [J]. 腐蚀科学与防护技术, 2019, 31(5): 521
5 Luo Z W, Zhang Y, Zhou Y Z, et al. Effect of fluoride ion on the corrosion of 304 stainless steel in (NH4)2SO4 solution containing chloride ions [J]. Int. J. Electrochem. Sci., 2021, 16: 210513
doi: 10.20964/2021.05.30
6 Luo Z W, Zuo J, Jiang H, et al. Inhibition effect of fluoride ion on corrosion of 304 stainless steel in occluded cell corrosion stage in the presence of chloride ion [J]. Metals, 2021, 11: 350
doi: 10.3390/met11020350
7 Lv Z P, Yang W. Life prediction of structures suffering localized corrosion [J]. Corros. Prot., 1999, (5): 206
吕战鹏, 杨 武. 局部腐蚀作用下设备的寿命预测 [J]. 腐蚀与防护, 1999, (5): 206
8 Mai X S. Analysis and treatment of stainless steel corrosion defect in ammonia desulfurization absorption tower [J]. Guangxi Elect. Power, 2014, 37(5): 82
麦秀树. 氨法脱硫吸收塔内不锈钢腐蚀缺陷分析及处理 [J]. 广西电力, 2014, 37(5): 82
9 Lian Z Y, Luo Z W, Yuan L R, et al. Corrosion investigation of ammonia flue gas desulfurization (Article) [J]. Mater. Perform., 2016, 55: 50
10 Yin Y Y, Liu J F, Miu K X, et al. Effect of SO 4 2 - on corrosion of stainless steel in solutions containing Cl- [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 34
尹阳阳, 刘建峰, 缪克基 等. SO 4 2 - 对不锈钢在含Cl-溶液中腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 34
doi: 10.11902/1005.4537.2020.234
11 Yu C Y, Zuo J, Fu Z H, et al. Optimization of simulated rust layer of 304 stainless steel occluded cell in ammonia desulphurization slurry [J]. Corros. Prot., 2022, 43(8): 28
余晨月, 左 杰, 付志浩 等. 氨法脱硫浆液中304不锈钢闭塞电池模拟锈层的优选 [J]. 腐蚀与防护, 2022, 43(8): 28
12 Liu M N. The influence of surface modification on corrosion behavior of 304 stainless steel in simulated nuclear power environment [D]. Anshan: University of Science and Technology Liaoning, 2020
刘梦楠. 表面改性对304不锈钢在模拟核电环境下腐蚀行为影响研究 [D]. 鞍山: 辽宁科技大学, 2020
13 Voigt C, Hubálková J, Ditscherlein L, et al. Characterization of reticulated ceramic foams with mercury intrusion porosimetry and mercury probe atomic force microscopy [J]. Ceram. Int., 2018, 44: 22963
doi: 10.1016/j.ceramint.2018.09.094
14 Li S J, Feng L J, Zhang J. Corrosion research of Quinoline inhibitor for pipeline steel in simulated occluded solution [J]. J. Basic Sci. Eng., 2016, 24: 1025
李善建, 冯拉俊, 张 静. 喹啉衍生物缓蚀剂对油管钢材在模拟溶液闭塞区中的腐蚀研究 [J]. 应用基础与工程科学学报, 2016, 24: 1025
15 Liu X Y, Zhao Y Z, Zhang H, et al Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 195
刘欣怡, 赵亚州, 张 欢 等. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 195
doi: 10.11902/1005.4537.2020.020
16 Scheffe J R, Francés A, King D M, et al. Atomic layer deposition of iron (III) oxide on zirconia nanoparticles in a fluidized bed reactor using ferrocene and oxygen [J]. Thin Solid Films, 2009, 517: 1874
doi: 10.1016/j.tsf.2008.09.086
17 Jeon B H, Dempsey B A, Burgos W D. Kinetics and mechanisms for reactions of Fe (II) with iron (III) oxides [J]. Environ. Sci. Technol., 2003, 37: 3309
doi: 10.1021/es025900p
18 Salvi A M, Castle J E, Watts J F, et al. Peak fitting of the chromium 2p XPS spectrum [J]. Appl. Surf. Sci., 1995, 90: 333
doi: 10.1016/0169-4332(95)00168-9
19 Lin Y Z. Crevice corrosion of stainless steel in NaCl solution-changes of anolyte and state of Cr (Ⅲ) existing within crevice [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 9
林玉珍. 不锈钢在氯化钠水溶液中的缝隙腐蚀—缝内阳极液的变化和Cr (Ⅲ)存在的形态 [J]. 中国腐蚀与防护学报, 1985, 5: 9
[1] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[2] LI Qiang, LU Cheng, TANG Yinghao, TANG Jianfeng, LIU Bingcheng. Localized CO2 Corrosion of X70 Steel in Water Accumulation Zone of Wet Gas Pipelines[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[3] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[4] DENG Chengman, LIU Zhe, XIA Da-Hai, HU Wenbin. Localized Corrosion Mechanism of 5083-H111 Al Alloy in Simulated Dynamic Seawater Zone[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[5] JIANG Fangfang, YUN Hong, PENG Li, ZHANG Yihao, LI Weishun, DAI Wenjing, WANG Baofeng, XU Qunjie. Protective Performance of NiFe-LDH Composite Coatings Modified by insitu Polymerized Polyaniline[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[6] HUANG Jiahe, YUAN Xi, CHEN Wen, YAN Wenjing, JIN Zhengyu, LIU Haixian, LIU Hongfang, LIU Hongwei. Effect of Temperature on Corrosion Behavior of Pipeline Steels N80 and TP125V in Artificial CO2-saturated Fracturing Fluid of Shale Gas[J]. 中国腐蚀与防护学报, 2023, 43(2): 251-260.
[7] MAO Yingchang, ZHU Yu, SUN Shengkai, QIN Zhenbo, XIA Da-Hai, HU Wenbin. Localized Corrosion of 5083 Al-alloy in Simulated Marine Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.
[8] ZHAO Haiyang, GAO Duolong, ZHANG Tong, LV You, ZHANG Yupeng, ZHANG Xinxin, SHI Xin, WEI Xiaojing, LIU Dongmei, DONG Zehua. Microstructure and Corrosion Evolution of Aerospace AA2024 Al-Alloy Thin Wall Structure Produced Through WAAM[J]. 中国腐蚀与防护学报, 2022, 42(4): 621-628.
[9] CHEN Zhijian, ZHOU Xuejie, CHEN Hao. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[10] SU Na, YE Mengying, LI Jianmin, GAO Rongjie. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[11] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[12] AN Yiqiang, WANG Xin, CUI Zhongyu. Effect of Nitric Acid Passivation on Critical Cl- Concentration for Corrosion of 304 Stainless Steel in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[13] GAI Xipeng, LEI Li, CUI Zhongyu. Pitting Corrosion Behavior of 304 Stainless Steel in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[14] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!