Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (2): 231-241    DOI: 10.11902/1005.4537.2022.176
Current Issue | Archive | Adv Search |
Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene
LIAN Yancheng1, LIANG Fuyuan1, HE Jianchao2, LI Jin2, WU Junwei1,2(), LENG Xuesong2
1.School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2.Institute of Special Environmental and Material Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Download:  HTML  PDF(26523KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With low surface energy and high chemical stability, polytetrafluoroethylene (PTFE) has received a lot of attention in the fields of superhydrophobicity and anti-corrosion applications from both research and industry. For PTFE bulk materials, superhydrophobicity can be achieved by increasing the surface roughness alone, while thin films of superhydrophobicity have the advantages of applying on different substrates, which can also benefit from PTFE. In this paper, we present a comprehensive review of the ideas of developing superhydrophobic materials and thin films from PTFE materials. Firstly, the processing processes of superhydrophobic PTFE bulk and thin film materials are summarized, and the development results and characteristics of each method are explained. Secondly, to further enhance the properties of superhydrophobic films, numerous researchers have modified the films by doping to achieve enhanced durability and integration with other properties, respectively. Finally, an outlook on the development of PTFE superhydrophobic materials and their applications in corrosion prevention is also presented.

Key words:  polytetrafluoroethylene      superhydrophobicity      thin film      doping      corrosion protection     
Received:  30 May 2022      32134.14.1005.4537.2022.176
ZTFLH:  TG172  
About author:  WU Junwei, E-mail: junwei.wu@hit.edu.cn

Cite this article: 

LIAN Yancheng, LIANG Fuyuan, HE Jianchao, LI Jin, WU Junwei, LENG Xuesong. Research Progress on Preparation Process of Superhydrophobic Polytetrafluoroethylene. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 231-241.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.176     OR     https://www.jcscp.org/EN/Y2023/V43/I2/231

Fig.1  Schematic diagrams of Young's model (a), Wenzel model (b) and Cassie-Baxter model (c)
Fig.2  Surface SEM images (a) and optical images of water-repellent performance (b) under P=2.4 MPa, Ts=190 ℃ (a1, b1), P=4.0 MPa, Ts=190 ℃ (a2, b2), P=7.2 MPa, Ts=190 ℃ (a3, b3) and P=7.2 MPa, Ts=230 ℃ (a4, b4) (the default tc=1 min, ts=10 min)[30]
Fig.3  SEM images of PTFE superhydrophobic surface after 5 times processing with 3 W (a), 4 W (b), 5 W (c), 6 W (d), 7 W (e) and 8 W (f) processing power[31]
Fig.4  FESEM images of pristine and ion beam treated PTFE surfaces at normal angle of incidence: (a) Pristine, (b) 300 eV, (c) 500 eV, (d) 800 eV. High magnification images are shown in insets. Ion beam treatment time is 60 s[33]
Fig.5  2D AFM images of PTFE surface treated at 50 W (a), 150 W (b), 300 W (c)[40] and variation in the average surface roughness of PTFE surfaces with RF power (d)[35]. Ar plasma treatment time is 5 min, and variation in static water contact angle (WCA) with radiofrequency (RF) power and plasma treatment time
Fig.6  Morphologies of precursor membranes (a1-a4) and corresponding sintered membranes (b1-b4) at different Pullulan/PTFE mass ratios (1:13 (a1, b1), 1:9 (a2, b2), 1:7 (a3, b3), 1:5 (a4, b4)). The cross section of the sintered hollow fiber membrane at 380 ℃ (c1-c4)[41]
Fig.7  SEM image (a, c) and XPS spectrum (b, d) of C 1s of the rf-sputtered PTFE film with a thickness of 450 nm (a, b)[54], and C 1s of a Cat-CVD PTFE film coated on the RF-sputtered PTFE film (c, d)[43]
Fig.8  FE-SEM images of the PTFE-SiO2 thin films with different SiO2 nanoparticles[45]: (a) 0 g/L, (b) 0.5 g/L, (c) 1 g/L, (d) 2 g/L, (e) 5 g/L. With magnification 50,000. SiO2 nanoparticle effects (f) and temperature effects (g) on the water contact angle of the PTFE-SiO2 thin film surface[45]
Fig.9  FESEM images of as-electrospun PTFE/PVA/POSS nanofibrous membranes before calcination (a1-a4) and after calcination (b1-b4), and three-dimensional confocal microscopy images of PTFE/POSS nanofibrous membranes after calcination (c1-c4)[47] of #PTFE (a1-c1); #POSS-1 (a2-c2); #POSS-2 (a3-c3) and #POSS-3 (a4-c4)
Fig.10  Cross-sectional FE-TEM images of Ag- PPFC nanocomposite films coated on a PET substrate (a) and Super-hydrophobic front and back surfaces of the coated fabric, with inset showing measurement of the water contact angle (b)[50]
[1] Lin S Y, Liang W X, Yang C Q, et al. Progress in superhydrophobic self-cleaning coatings [J]. Fujian Constr. Sci. Technol., 2015, (4): 53
(林淑云, 梁伟欣, 杨聪强 等. 超疏水自清洁涂层的研究进展 [J]. 福建建设科技, 2015, (4): 53)
[2] Zhang X, Guan J H, Yin H W, et al. Research advances in application of superhydrophobic surfaces to anticorrosion of metals [J]. Electroplat. Finish., 2021, 40: 132
(张欣, 关金鹤, 尹华伟 等. 超疏水表面在金属抗腐蚀应用中的研究进展 [J]. 电镀与涂饰, 2021, 40: 132)
[3] Li J, Jiao W C, Wang Y C, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology [J]. Acta Mater. Compos. Sin., 2022, 39: 23
(李君, 矫维成, 王寅春 等. 超疏水材料在防/除冰技术中的应用研究进展 [J]. 复合材料学报, 2022, 39: 23)
[4] Lin Y P, Wang Q C, Lü S W, et al. Research progress on superhydrophobic surface materials in biology and medicine molecule detection [J]. Surf. Technol., 2022, 51: 113
(林彦萍, 王庆成, 吕恕位 等. 超疏水表面材料在生物医学检测领域研究进展 [J]. 表面技术, 2022, 51: 113)
[5] Dong W R, Yu Y, Yang Y Y, et al. Research development on the application of superhydrophobic film in oil-water separation [J]. New Chem. Mater., 2019, (Suppl.): 16
(董文瑞, 喻媛, 杨悦悦 等. 超疏水膜在油水分离中应用的研究进展 [J]. 化工新型材料, 2019, (增刊): 16)
[6] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces [J]. Planta, 1997, 202: 1
doi: 10.1007/s004250050096
[7] Ren Z L. Transparent superhydrophobic polytetrafluoroethylene films prepared by radio frequency magnetron sputtering [D]. Chongqing: Chongqing University, 2017: 1
(任芝龙. 射频磁控溅射制备透明超疏水聚四氟乙烯薄膜 [D]. 重庆: 重庆大学, 2017: 1)
[8] Hare E F, Shafrin E G, Zisman W A. Properties of films of adsorbed fluorinated acids [J]. J. Phys. Chem., 1954, 58: 236
doi: 10.1021/j150513a011
[9] Liu X Z, Li C, Wang J F, et al. Study of Ni-P and Ni-P-PTFE coatings on carbon steel via electroless deposition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 379
(刘学忠, 李超, 王建飞 等. 碳钢表面化学镀Ni-P及Ni-P-PTFE纳米非晶镀层研究 [J]. 中国腐蚀与防护学报, 2010, 30: 379)
[10] Xu Y K, Zhu S, Jin X Y. Structure and development of polytetrafluoroethylene anti-corrosion filtration materials [J]. J. Text. Res., 2017, 38(8): 161
(徐玉康, 朱尚, 靳向煜. 聚四氟乙烯耐腐蚀过滤材料结构特征及发展趋势 [J]. 纺织学报, 2017, 38(8): 161)
[11] Gu L J. Research progress of polytetrafluoroethylene and its application [J]. Zhejiang Chem. Ind., 2020, 51(3): 1
(顾榴俊. 聚四氟乙烯及其应用研究进展 [J]. 浙江化工, 2020, 51(3): 1)
[12] Zhang L, Li Y H. Current properties and applications of polytetrafluoroethylene [J]. Sci. Technol. Consult. Herald, 2012, (4): 111
(张林, 李玉海. 聚四氟乙烯的性能与应用现状 [J]. 科技创新导报, 2012, (4): 111)
[13] Sawyer W G, Freudenberg K D, Bhimaraj P, et al. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles [J]. Wear, 2003, 254: 573
doi: 10.1016/S0043-1648(03)00252-7
[14] Huang Z G, Xu S Z, Wei H, et al. Application of polytetrafluoroethylene in turbine oil system sealing [J]. Plant Maint. Eng., 2021, (21): 67
(黄治国, 徐生智, 魏辉 等. 聚四氟乙烯在汽轮机油系统密封中的应用 [J]. 设备管理与维修, 2021, (21): 67)
[15] Lu F K, Wang Y T, Ma M. Polytetrafluoroethylene in pneumatic valves [J]. China Sci. Technol. Inform., 2018, (21): 44
(鹿峰凯, 王业泰, 马明. 聚四氟乙烯在气动阀中的应用 [J]. 中国科技信息, 2018, (21): 44)
[16] Huang Y, Wang W D, Huang W, et al. Application of PTFE in sliding bearing [J]. Organo-Fluorine Ind., 2020, (4): 47
(黄彧, 王文东, 黄炜 等. 聚四氟乙烯在滑动轴承中的应用 [J]. 有机氟工业, 2020, (4): 47)
[17] Zhang J A, Zhao W D. Polytetrafluoroethylene in slipform construction [J]. Technol. Innovat. Appl., 2021, 11(21): 164
(张金安, 赵卫冬. 聚四氟乙烯在滑模施工中的应用 [J]. 科技创新与应用, 2021, 11(21): 164)
[18] Liu J X, Meng Z F, Cui K W, et al. Polytetrafluoroethylene products and its application [J]. Organo-Fluorine Ind., 2020, (3): 17
(刘景霞, 孟章富, 崔坤伟 等. 聚四氟乙烯制品及其应用 [J]. 有机氟工业, 2020, (3): 17)
[19] Kou W T, Xu Y K, Yang X H. Research progress of polytetrafluoroethylene (PTFE) post-treatment technology for bag filter [J]. Mod. Silk Sci. Technol., 2020, 35(5): 34
(寇婉婷, 徐玉康, 杨旭红. 袋式除尘滤料的聚四氟乙烯后处理技术研究进展 [J]. 现代丝绸科学与技术, 2020, 35(5): 34)
[20] Soo J C, Monaghan K, Lee T, et al. Air sampling filtration media: Collection efficiency for respirable size-selective sampling [J]. Aerosol Sci. Technol., 2016, 50: 76
doi: 10.1080/02786826.2015.1128525
[21] Wang H T. Polymer with good biocompatibility [J]. China Strat. Emerg. Ind., 2018, (4): 172
(王浩同. 良好生物相容性的高分子材料 [J]. 中国战略新兴产业, 2018, (4): 172)
[22] Ma L. Study on surface chemical modification and biocompatibility of PTFE membrane [J]. Zhengzhou: Zhengzhou University, 2020: 1
(马雷. PTFE膜的表面化学改性及其生物相容性的研究 [D]. 郑州: 郑州大学, 2020: 1)
[23] Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
(尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93)
[24] Jiang F, Zhao Y, Hu J M. Research advance in application of superhydrophobic surfaces in corrosion protection of metals [J]. Surf. Technol., 2020, 49(2): 109
(蒋帆, 赵越, 胡吉明. 超疏水表面在金属防护中应用的研究进展 [J]. 表面技术, 2020, 49(2): 109)
[25] Young T. III. An essay on the cohesion of fluids [J]. Philos. Trans. Roy. Soc. Lond., 1805, 95: 65
[26] Li X M, Reinhoudt D, Crego-Calama M. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces [J]. Chem. Soc. Rev., 2007, 36: 1350
doi: 10.1039/b602486f
[27] Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Ind. Eng. Chem., 1936, 28: 988
doi: 10.1021/ie50320a024
[28] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans. Farad. Soc., 1944, 40: 546
doi: 10.1039/tf9444000546
[29] Song K F. Preparation and tribological properties of complex textured PTFE surfaces by embossing and thermal annealing [D]. Qinhuangdao: Yanshan University, 2020: 1
(宋克峰. 模压烧结制备复杂织构的PTFE表面及其摩擦学性能 [D]. 秦皇岛: 燕山大学, 2020: 1)
[30] Gao J, Deng Y J, Peng L F, et al. Water-repellent hierarchical microstructured PTFE films via micro powder hot embossing [J]. J. Mater. Process. Technol., 2021, 297: 117261
doi: 10.1016/j.jmatprotec.2021.117261
[31] Zhan Y L, Ruan M, Li W, et al. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior [J]. Colloid. Surf. A, 2017, 535: 8
doi: 10.1016/j.colsurfa.2017.09.018
[32] Pachchigar V, Ranjan M, Sooraj K P, et al. Self-cleaning and bouncing behaviour of ion irradiation produced nanostructured superhydrophobic PTFE surfaces [J]. Surf. Coat. Technol., 2021, 420: 127331
doi: 10.1016/j.surfcoat.2021.127331
[33] Pachchigar V, Ranjan M, Mukherjee S. Role of hierarchical protrusions in water repellent superhydrophobic PTFE surface produced by low energy ion beam irradiation [J]. Sci. Rep., 2019, 9: 8675
doi: 10.1038/s41598-019-45132-z pmid: 31209236
[34] Garg S K, Datta D P, Ghatak J, et al. Tunable wettability of Si through surface energy engineering by nanopatterning [J]. RSC Adv., 2016, 6: 48550
doi: 10.1039/C6RA04906K
[35] Pachchigar V, Gaur U K, Amrutha T V, et al. Hydrophobic to superhydrophobic and hydrophilic transitions of Ar plasma-nanostructured PTFE surfaces [J]. Plasma Process. Polym., 2022, 19: e2200037
[36] Wang X G, Zhu X M, Yin Y Z. Optimisation of plasma etching processes [J]. China New Technol. Prod., 2010, (14): 22
(王晓光, 朱晓明, 尹延昭. 等离子体刻蚀工艺的优化研究 [J]. 中国新技术新产品, 2010, (14): 22)
[37] Yang S G, Li X K, Luo S D, et al. Electrostatic spinning technology and its application progress [J]. Sci. Technol., 2014, (12): 85
(杨守共, 李向葵, 罗素丹 等. 静电纺丝技术及其应用进展 [J]. 科技展望, 2014, (12): 85)
[38] Ji J, Dai L X. Research progress of electrostatic spinning technology and its application [J]. Sci. Technol. Inform., 2009, (33): 118
(纪杰, 戴礼兴. 静电纺丝技术研究进展及其应用 [J]. 科技资讯, 2009, (33): 118)
[39] Goessi M, Tervoort T, Smith P. Melt-spun poly (tetrafluoroethylene) fibers [J]. J. Mater. Sci., 2007, 42: 7983
doi: 10.1007/s10853-006-1266-2
[40] Feng S S, Zhong Z X, Wang Y, et al. Progress and perspectives in PTFE membrane: Preparation, modification, and applications [J]. J. Membrane Sci., 2018, 549: 332
doi: 10.1016/j.memsci.2017.12.032
[41] Pang H L, Tian K X, Li Y P, et al. Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination [J]. Sep. Purif. Technol., 2021, 274: 118186
doi: 10.1016/j.seppur.2020.118186
[42] Wang F Z, Wu J W, et al. Modern Ion Plating Technology [M]. Beijing: Machinery Industry Press, 2021: 139
(王福贞, 武俊伟 等. 现代离子镀膜技术 [M]. 北京: 机械工业出版社, 2021: 139)
[43] Kim H M, Sohn S, Ahn J S. Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods [J]. Surf. Coat. Technol., 2013, 228: S389
doi: 10.1016/j.surfcoat.2012.05.085
[44] Shao J J, Ren Z L, Yang Y L, et al. Low temperature super-hydrophobicity of magnetron sputtered polytetrafluoroethylene coatings [J]. Chin. J. Vac. Sci. Technol., 2017, 37: 154
(邵晶晶, 任芝龙, 杨雅伦 等. 磁控溅射制备聚四氟乙烯低温超疏水薄膜 [J]. 真空科学与技术学报, 2017, 37: 154)
[45] Eshaghi A, Mesbahi M, Aghaei A A. Transparent hierarchical micro-nano structure PTFE-SiO2 nanocomposite thin film with superhydrophobic, self-cleaning and anti-icing properties [J]. Optik, 2021, 241: 166967
doi: 10.1016/j.ijleo.2021.166967
[46] Tam J, Lau J C F, Erb U. Thermally robust non-wetting Ni-PTFE electrodeposited nanocomposite [J]. Nanomaterials, 2018, 9: 2
doi: 10.3390/nano9010002
[47] Zhu X, Feng S S, Zhao S F, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification [J]. J. Membrane Sci., 2020, 594: 117473
doi: 10.1016/j.memsci.2019.117473
[48] Wang K W, Xiong P, Xu X P, et al. Chemically robust carbon nanotube-PTFE superhydrophobic thin films with enhanced ability of wear resistance [J]. Prog. Nat. Sci.: Mater. Inter., 2017, 27: 396
doi: 10.1016/j.pnsc.2017.04.004
[49] Shao W F, Liu D Q, Cao T S, et al. Study on favorable comprehensive properties of superhydrophobic coating fabricated by polytetrafluoroethylene doped with graphene [J]. Adv. Compos. Hybrid Mater., 2021, 4: 521
doi: 10.1007/s42114-021-00243-y
[50] Cho E, Kim S H, Kim M, et al. Super-hydrophobic and antimicrobial properties of Ag-PPFC nanocomposite thin films fabricated using a ternary carbon nanotube-Ag-PTFE composite sputtering target [J]. Surf. Coat. Technol., 2019, 370: 18
doi: 10.1016/j.surfcoat.2019.04.045
[1] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[2] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[3] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[4] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[5] WEN Jiaxin, ZHANG Xin, LIU Yunxia, ZHOU Yongfu, LIU Kejian. Preparation and Performance of Smart Coating Doped with Nanocontainers of BTA@MSNs-SO3H-PDDA for Anti-corrosion of Carbon Steel[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[6] LI Guangquan, LI Guangfang, WANG Junqiang, ZHANG Tiansui, ZHANG Fei, JIANG Ximin, LIU Hongfang. Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[9] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[10] Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
[11] Fangming ZHANG,Zhixiang ZENG,Gang WANG,Junjun CHEN,Yong XU,Liping WANG. Fabrication and Anti-corrosion Performance of Super-hydrophobic Surface Film on Q235 Steel Substrate[J]. 中国腐蚀与防护学报, 2016, 36(6): 617-623.
[12] Chao QIAN,Hong YUN,Zhiguo ZHANG,Qunjie XU. Anticorrosive Performance of Nano ZnS Reinforced Polyaniline Coatings on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
[13] DU Bin, ZHOU Shisheng, LI Min, MA Liping. Progress in Research and Development for Surface Modification of Aluminum Pigments and Related Techniques[J]. 中国腐蚀与防护学报, 2014, 34(5): 410-418.
[14] MA huan,DAI Yatang,LI Changxiong,ZHANGHuan,OU Qinghai,SHEN Zhen. Electrochemical Synthesis of Polythiophene Film and its Effect on Corrosion Resistance of Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 148-152.
[15] REN Yanyan, GUO Ning, WU Mingbo. RESEARCH PROGRESS OF BORON-DOPING TO IMPROVE ANTIOXIDATION ABILITY OF CARBON MATERIALS[J]. 中国腐蚀与防护学报, 2012, 32(3): 183-188.
No Suggested Reading articles found!