Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 159-165    DOI: 10.11902/1005.4537.2022.074
Current Issue | Archive | Adv Search |
Molecular Simulation on Oxidation Mechanism of FeCr Alloy in High Temperature Steam Environment
SHENG Ganwen, QI Jing(), LU Ping, XU Hong, HONG Miaomin
School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210046, China
Download:  HTML  PDF(4629KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The reaction of FeCr alloy, as tube material of the ultra (super) critical unit, with high-temperature steam may result in the formation a protective oxide scale. However, the spallation of the oxide scale can easily lead to tube burst failure and seriously endanger the safe operation of the unit. Based on the molecular dynamics of the ReaxFF reaction, this paper reveals the mechanism related with the high-temperature steam oxidation of FeCr alloy on atomic scale. The results showed that at the initial oxidation stage, the Cr atoms on the surface of the alloy could induce the steam decomposition, and the inwardly diffused O atoms oxidized the alloy to form an inner FeCr oxide. Subsequently, under the inner oxide growth stress, the metal atoms migrated outward layer by layer. Due to the difference in the diffusion rate of Fe atoms and Cr atoms in the oxide scale, a double-layered oxide scale was formed, which was consistent with the experimental observations. The steam temperature has an important influence on the steam oxidation characteristics of FeCr alloys. With the increasing steam temperature, the protective effect of the formed oxide scale on the alloy gradually decreased.

Key words:  FeCr alloy      oxidation      ultra-supercritical units      molecular simulation      microscale     
Received:  15 March 2022      32134.14.1005.4537.2022.074
ZTFLH:  TK225  
Fund: National Natural Science Foundation of China(51676035)

Cite this article: 

SHENG Ganwen, QI Jing, LU Ping, XU Hong, HONG Miaomin. Molecular Simulation on Oxidation Mechanism of FeCr Alloy in High Temperature Steam Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 159-165.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.074     OR     https://www.jcscp.org/EN/Y2023/V43/I1/159

Fig.1  Molecular dynamics model of alloy in high temperature steam (The white, red, gray and yellow atoms are H, O, Fe and Cr, respectively): (a) main view, (b) top view
Fig.2  Average positions of top Fe, Cr atoms and bottom O atoms along the Z direction during the oxidation process at 900 K (a), 1000 K (b) and 1100 K (c)
Fig.3  Consumption of steam molecules during the 1100 K oxidation process
Fig.4  Steam chemisorption and decomposition on the alloy surface: (a) 1 ps, (b) 12 ps, (c) 14.3 ps, (d) 15 ps (The white, red, gray and yellow atoms are H, O, Fe and Cr, respectively)
Fig.5  Atom migration on the alloy surface: (a) Cr, (b) O, (c) Fe
Fig.6  Average charge change of the top four layers of FeCr alloy: (a) Cr, (b) Fe (The numbers in brackets represent the number of top three layers)
Fig.7  Distribution of elements in oxide film at 300 ps (a) and 2000 ps (b)
Fig.8  Mean square displacement of Fe, Cr atoms in the oxide layer
Fig.9  Variation trend of the number of steam molecules consumed at different temperatures
Fig.10  Thickness of the oxide layer at different reaction temperatures was simulated after 2000 ps
1 Yang Q P, Lin W J, Wang Y M, et al. Industry development and frontier technology roadmap of thermal power generation [J]. Proc. CSEE, 2017, 37: 3787
杨倩鹏, 林伟杰, 王月明 等. 火力发电产业发展与前沿技术路线 [J]. 中国电机工程学报, 2017, 37: 3787
2 Xu H, Qi J, Chen Y F, et al. Investigating the role of oxygenated treatment on oxide exfoliation in TP347H alloy tube based on finite element method [J]. Proc. CSEE, 2020, 40: 5979
徐洪, 祁晶, 陈有福 等. 基于有限元的溶氧蒸汽环境TP347H管氧化膜剥落特性分析 [J]. 中国电机工程学报, 2020, 40: 5979
3 Guo X L, Chen K, Gao W H, et al. A research on the corrosion and stress corrosion cracking susceptibility of 316L stainless steel exposed to supercritical water [J]. Corros. Sci., 2017, 127: 157
doi: 10.1016/j.corsci.2017.08.027
4 Qi J, Zhou K Y, Huang J L, et al. Influence of temperature on the oxide spallation of T91 alloy superheater tubes in power plant [J]. Appl. Therm. Eng., 2018, 128: 244
doi: 10.1016/j.applthermaleng.2017.08.139
5 Liang Z Y, Gui Y, Wang Y G, et al. Corrosion behavior and mechanism of heat-resistant steel T91 in supercritical carbon dioxide environment [J]. Therm. Power Gener., 2020, 49(10): 73
梁志远, 桂雍, 王云刚 等. 超临界二氧化碳环境下耐热钢T91腐蚀行为机理研究 [J]. 热力发电, 2020, 49(10): 73
6 Pronobis M, Wojnar W. Preliminary calculations of erosion wear resulting from exfoliation of iron oxides in austenitic superheaters [J]. Eng. Failure Anal., 2013, 32: 54
doi: 10.1016/j.engfailanal.2013.01.051
7 Liang Z Y, Jin X, Zhao Q X. Investigation of overheating of the final super-heater in a 660 MW power plant [J]. Eng. Failure Anal., 2014, 45: 59
doi: 10.1016/j.engfailanal.2014.06.022
8 Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water [J]. Corros. Sci., 2016, 113: 172
doi: 10.1016/j.corsci.2016.10.020
9 Jiang D F, Xu H, Zhu Z L, et al. Influence of exposure environment on the corrosion resistance of 2-9% Cr steels [J]. Oxid. Met., 2017, 87: 189
doi: 10.1007/s11085-016-9665-5
10 Zhang N Q, Yue G Q, Lv F B, et al. Oxidation of low-alloy steel in high temperature steam and supercritical water [J]. Mater. High Temp., 2017, 34: 222
doi: 10.1080/09603409.2017.1286549
11 Choudhry K I, Mahboubi S, Botton G A, et al. Corrosion of engineering materials in a supercritical water cooled reactor: characterization of oxide scales on Alloy 800H and stainless steel 316 [J]. Corros. Sci., 2015, 100: 222
doi: 10.1016/j.corsci.2015.07.035
12 Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016
13 Zhang N Q, Cao Q, Gui J J, et al. Oxidation and chromia evaporation of austenitic steel TP347HFG in supercritical water [J]. Mater. High Temp., 2018, 35: 461
doi: 10.1080/09603409.2017.1381803
14 Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700 ℃ coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
曹超, 蒋成洋, 鲁金涛 等. 不同Cr含量的奥氏体不锈钢在700 ℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
doi: 10.11900/0412.1961.2020.00496
15 Srisrual A, Pitaksakorn K, Promdirek P. Influence of water vapor on oxide scale morphology of Incoloy800HT at 850 ℃ [J]. Appl. Mech. Mater., 2018, 875: 36
doi: 10.4028/www.scientific.net/AMM.875.36
16 Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
17 Töpfer J, Aggarwal S, Dieckmann R. Point defects and cation tracer diffusion in (Cr x Fe1- x )3- δ O4 spinels [J]. Solid State Ionics, 1995, 81: 251
doi: 10.1016/0167-2738(95)00190-H
18 Li Y H, Xu T T, Wang S Z, et al. Predictions and analyses on the growth behavior of oxide scales formed on ferritic-martensitic in supercritical water [J]. Oxid. Met., 2019, 92: 27
doi: 10.1007/s11085-019-09912-2
19 Bischoff J, Motta A T, Eichfeld C, et al. Corrosion of ferritic-martensitic steels in steam and supercritical water [J]. J. Nucl. Mater., 2013, 441: 604
doi: 10.1016/j.jnucmat.2012.09.037
20 Lin Z Z, Liu L, Liu C. Selective adsorption of CO2/N2 mixtures in carbon nanotubes: A molecular simulation study [J]. J. Eng. Thermophys., 2021, 42: 1369
林志忠, 刘浪, 刘朝. 碳纳米管吸附分离CO2/N2混合物的分子模拟研究 [J]. 工程热物理学报, 2021, 42: 1369
21 Ai L Q, Huang H S, Zhou Y S, et al. The oxidation of Fe/Ni alloy surface with supercritical water: a ReaxFF molecular dynamics simulation [J]. Appl. Surf. Sci., 2021, 553: 149519
doi: 10.1016/j.apsusc.2021.149519
22 Hong S, van Duin A C T. Molecular dynamics simulations of the oxidation of aluminum nanoparticles using the ReaxFF reactive force field [J]. J. Phys. Chem., 2015, 119C: 17876
23 Xu H, Qi J. Reactive molecular dynamics study of the oxidation behavior of iron‐based alloy in supercritical water [J]. Mater. Corros., 2021, 72: 1555
24 Van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons [J]. J. Phys. Chem., 2001, 105A: 9396
25 Hong D K, Cao Z, Yang C M, et al. Catalytic effect of calcium on reaction of phenol using reactive molecular dynamics simulation [J]. CIESC J., 2019, 70: 1788
洪迪昆, 操政, 杨昌敏 等. 钙催化苯酚反应的分子动力学模拟 [J]. 化工学报, 2019, 70: 1788
26 Saha T K, Purkait P. Understanding the impacts of moisture and thermal ageing on transformer's insulation by dielectric response and molecular weight measurements [J]. IEEE Trans. Dielect. Elect. Insul., 2008, 15: 568
27 Maher K D, Bressler D C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals [J]. Bioresour. Technol., 2007, 98: 2351
doi: 10.1016/j.biortech.2006.10.025
28 Li X X, Mo Z, Liu J, et al. Revealing chemical reactions of coal pyrolysis with GPU-enabled ReaxFF molecular dynamics and cheminformatics analysis [J]. Mol. Simul., 2015, 41: 13
doi: 10.1080/08927022.2014.913789
29 Zeng Y F, Wu G N, Yang Y, et al. Study on the pyrolysis mechanism of silicon insulating oil and the influence of moisture on it based on molecular simulation [J]. Proc. CSEE, 2020, 40: 1369
曾奕凡, 吴广宁, 杨雁 等. 基于分子模拟的硅绝缘油高温裂解及水分的影响机理研究 [J]. 中国电机工程学报, 2020, 40: 1369
30 Shin Y K, Kwak H, Vasenkov A V, et al. Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst [J]. ACS Catal., 2015, 5: 7226
doi: 10.1021/acscatal.5b01766
31 Mohammadtabar K, Eder S J, Bedolla P O, et al. Reactive molecular dynamics simulations of thermal film growth from di-tert-butyl disulfide on an Fe(100) surface [J]. Langmuir, 2018, 34: 15681
doi: 10.1021/acs.langmuir.8b03170 pmid: 30475634
32 Qiao Y J, Wang P, Qi W, et al. Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations [J]. J. Alloy. Compd., 2020, 828: 154310
doi: 10.1016/j.jallcom.2020.154310
33 Qi J, Xu H, Liang Z Y, et al. The role of Cr atom in the early steam oxidation of Fe‐based alloys: an atomistic simulation [J]. Mater. Corros., 2021, 72: 465
34 Das N K, Shoji T, Takeda Y. A fundamental study of Fe-Cr binary alloy-oxide film interfaces at 288 ℃ by computational chemistry calculations [J]. Corros. Sci., 2010, 52: 2349
doi: 10.1016/j.corsci.2010.04.006
35 Wang H T, Han E H. Ab initio molecular dynamics simulation on interfacial reaction behavior of Fe-Cr-Ni stainless steel in high temperature water [J]. Comput. Mater. Sci., 2018, 149: 143
doi: 10.1016/j.commatsci.2018.03.025
36 Meng K, Xu J L, Dai Z H, et al. Molecular dynamics simulation of influence of water molecules on formation process of nascent soot particles [J]. CIESC J., 2019, 70: 2237
孟凯, 许建良, 代正华 等. 水分子对初始碳烟颗粒形成过程影响的分子动力学模拟 [J]. 化工学报, 2019, 70: 2237
37 Chu Q Z, Shi B L, Liao L J, et al. Reaction mechanism of the aluminum nanoparticle: physicochemical reaction and heat/mass transfer [J]. J. Phys. Chem., 2020, 124C: 3886
38 Das N K, Shoji T. Adsorption and diffusion of H and O on an Ni (1 1 1) surface containing different amounts of Cr [J]. Appl. Surf. Sci., 2018, 445: 217
doi: 10.1016/j.apsusc.2018.03.134
39 Jiang D E, Carter E A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles [J]. Phys. Rev., 2004, 70B: 064102
[1] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[2] REN Yan, ZHANG Xintao, GAI Xin, XU Jingjun, ZHANG Wei, CHEN Yong, LI Meishuan. High Temperature Oxidation Behavior of Quaternary (Cr2/3Ti1/3)3AlC2 MAX Ceramic in Air and Steam[J]. 中国腐蚀与防护学报, 2023, 43(6): 1284-1292.
[3] WANG Junyang, YI Gewen, WAN Shanhong, JIANG Jun. Research Progress on Structural Evolution and Applied Control Technology of Oxide Scale on Hot Rolled Steel Surface[J]. 中国腐蚀与防护学报, 2023, 43(5): 948-956.
[4] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[5] YUAN Lei, XIE Xin, CHEN Minghui, LI Fengjie, WANG Fuhui. Air Oxidation and NaCl Corrosion Behavior of 20 Steel Without and with Enamel Coating at 400 °C[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.
[6] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[8] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[9] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
[10] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[11] REN Yanjie, LV Yunlei, DAI Ting, GUO Xiaohui, CHEN Jian, ZHOU Libo, QIU Wei, NIU Yan. Oxidation Behavior of Ternary Alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 Atmosphere at 800-1000 ℃[J]. 中国腐蚀与防护学报, 2022, 42(6): 995-1001.
[12] XIE Leipeng, CHEN Minghui, WANG Jinlong, WANG Fuhui. High Temperature Oxidation Behavior of Ultrafine Grained ODS Nickel-based Superalloy Prepared by Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[13] PEI Shubo, WAN Dongyang, ZHOU Ping, CAO Guoqin, HU Junhua. Research Progress on Preparation, Microstructure, Oxidation- and Corrosion-resistance of High-entropy Alloy Coatings[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[14] ZHANG Qin, LIANG Taosha, WANG Wen, ZHAO Langlang, JIANG Yuefeng. Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
[15] TIAN Weiping, GUO Liangshuai, WANG Yuhang, ZHOU Peng, ZHANG Tao. Effect of Cu-/Ag-activation on Growth and Corrosion Resistance of Electroless Plated Ni-film on Plasma Electrolytic Oxidation Coating[J]. 中国腐蚀与防护学报, 2022, 42(4): 573-582.
No Suggested Reading articles found!