Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 791-797    DOI: 10.11902/1005.4537.2021.218
Current Issue | Archive | Adv Search |
Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids
FENG Li1,2(), ZHANG Shengtao3, ZHENG Siyuan1, HU Zhiyong1, ZHU Hailin1, MA Xuemei1
1.School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
2.Dezhou Graduate School, North University of China, Dezhou 253034, China
3.School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
Download:  HTML  PDF(2966KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion inhibition performance of imidazolidyl ionic liquids with different halogen anions (such as 1-vinyl-3-butyl-imidazolium chloride salt, [VBIM]Cl, 1-vinyl-3-butylimidazolium bromide, [VBIM]Br, and 1-vinyl-3-butylimidazolium iodide, [VBIM]I) on X70 steel in 0.5 mol/L H2SO4 solution was comparatively assessed by electrochemical impedance spectroscopy, polarization curve measurement, scanning electron microscopy and atomic force microscopy. The results indicated that they were all the mixed corrosion inhibitor and could effectively inhibit the corrosion of X70 steel in 0.5 mol/L H2SO4 solution. With the increase of the concentration of corrosion inhibitors, the corrosion inhibition efficiency increases gradually. And the inhibition efficiency reached the maximum by the concentration of 5 mmol/L. The corrosion inhibition efficiency of the inhibitors may be ranked as the follows: [VBIM]I is higher than [VBIM]Cl and [VBIM]Br in turn, which is mainly due to the specific adsorption of I-. The inhibition mechanism may be described as that there is a synergistic inhibition effect between the cation and anion of the studied ionic liquid corrosion inhibitors. In other words, both the anions and cations of ionic liquid can participate in the corrosion inhibition process of metal.

Key words:  corrosion inhibitor      Ionic liquid      sulfuric acid      electrochemistry      X70 steel      morphology analysis     
Received:  30 August 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(201878029)
Corresponding Authors:  FENG Li     E-mail:  20200164@nuc.edu.cn
About author:  FENG Li, E-mail: 20200164@nuc.edu.cn

Cite this article: 

FENG Li, ZHANG Shengtao, ZHENG Siyuan, HU Zhiyong, ZHU Hailin, MA Xuemei. Effect of Halogen Anions on Corrosion Inhibition of Ionic Liquids. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 791-797.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.218     OR     https://www.jcscp.org/EN/Y2022/V42/I5/791

Fig.1  Chemical structures of imidazole-based ionic liquid inhibitors
Fig.2  Equivalent circuits used to fit impedance data with (a) and without (b) inductive impedance
Fig.3  Nyquist and Bode plots of X70 steel electrode in 0.5 mol/L H2SO4 solutions with different concentrations of [VBIM]Cl (a), [VBIM]Br (b) and [VBIM]I (c) at 298 K
InhibitorC / mmol·L-1Rs / Ω·cm2Y0 / 10-5 Ω·cm2nCdl / μF·cm-2Rct / Ω·cm2L / Ω·cm2RL / Ω·cm2η / %
Blank00.9317.750.9098.523.7071.0181.0---
[VBIM]Cl0.11.1817.650.8994.529.30222.4152.019.1
0.51.2117.250.8694.354.53346.3460.456.5
11.4216.130.8587.075.16297.2395.468.5
21.0916.520.8383.181.24551.6495.170.8
51.3517.180.8080.9108.40961.5593.678.1
[VBIM]Br0.11.2217.610.8998.124.80144.1112.74.4
0.50.9316.940.9096.029.45284.8148.519.5
11.6714.710.8595.732.07105.9183.626.1
21.6813.810.9494.937.24588.0225.636.4
51.3712.440.8284.758.81176.2406.459.7
[VBIM]I0.10.7715.930.9090.849.40100.1347.052.0
0.50.7413.720.8879.8140.90155.5567.083.2
10.9010.060.8758.2285.60------90.8
20.677.330.8947.7402.20------94.1
51.025.510.9139.9669.10------96.5
Table 1  Electrochemical impedance data of X70 steel electrode in 0.5 mol/L H2SO4 solutions containing different concentrations of [VBIM]Cl, [VBIM]Br and [VBIM]I at 298 K
Fig.4  Polarization curves of X70 steel electrode in 0.5 mol/L H2SO4 solutions with different concentrations of [VBIM]Cl (a), [VBIM]Br (b) and [VBIM]I (c) at 298 K
InhibitorC / mmol·L-1Ecorr SCE / VIcorr / mA·cm-2-βc / mV·dec-1βa / mV·dec-1η / %
Blank0-0.4771.840168.4101.6---
[VBIM]Cl0.1-0.4681.463167.0108.020.5
0.5-0.4610.588156.487.668.0
1-0.4660.374146.183.479.7
2-0.4610.363152.577.180.3
5-0.4630.286151.976.884.5
[VBIM]Br0.10.4681.738166.9114.15.5
0.5-0.4691.415164.998.423.1
1-0.4701.332167.2104.727.6
2-0.4701.227173.2114.633.3
5-0.4710.579153.992.168.5
[VBIM]I0.1-0.4780.747145.091.959.4
0.5-0.4530.249134.9102.886.5
1-0.4330.086130.2105.495.4
2-0.4260.027131.248.997.9
5-0.3990.010140.537.499.4
Table 2  Polarization curve parameters of X70 steel electrode in 0.5 mol/L H2SO4 solutions with different concentrations of [VBIM]Cl, [VBIM]Br and [VBIM]I at 298 K
Fig.5  SEM images of X70 steel electrode immersed for 4 h at 298 K in 0.5 mol/L H2SO4 solutions without (a) and with 5 mmol/L [VBIM]Cl (b), [VBIM]Br (c) and [VBIM]I (d)
Fig.6  AFM and corresponding height images of X70 steel electrode immersed for 4 h at 298 K in 0.5 mol/L H2SO4 solutions without (a) and with 5 mmol/L [VBIM]Cl (b), [VBIM]Br (c) and [VBIM]I (d)
Fig.7  Schematic diagram of corrosion inhibition mechanism of ionic liquid inhibitors
1 Qiang Y J, Zhang S T, Tan B C, et al. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution [J]. Corros. Sci., 2018, 133: 6
2 Zhang H H, Chen Y. Experimental and theoretical studies of benzaldehyde thiosemicarbazone derivatives as corrosion inhibitors for mild steel in acid media [J]. J. Mol. Struct., 2019, 1177: 90
doi: 10.1016/j.molstruc.2018.09.048
3 Wang Q H, Tan B C, Bao H B, et al. Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media [J]. Bioelectrochemistry, 2019, 128: 49
doi: 10.1016/j.bioelechem.2019.03.001
4 Murmu M, Saha S K, Murmu N C, et al. Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L-1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study [J]. Corros. Sci., 2019, 146: 134
doi: 10.1016/j.corsci.2018.10.002
5 Fedel M, Poelman M, Olivier M, et al. Sebacic acid as corrosion inhibitor for hot-dip galvanized (HDG) steel in 0.1 M NaCl [J]. Surf. Interface Anal., 2019, 51: 541
doi: 10.1002/sia.6617
6 Luo X H, Ci C G, Li J, et al. 4-aminoazobenzene modified natural glucomannan as a green eco-friendly inhibitor for the mild steel in 0.5 M HCl solution [J]. Corros. Sci., 2019, 151: 132
doi: 10.1016/j.corsci.2019.02.027
7 Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
8 Wu X C, Wiame F, Maurice V, et al. 2-Mercaptobenzothiazole corrosion inhibitor deposited at ultra-low pressure on model copper surfaces [J]. Corros. Sci., 2020, 166: 108464
doi: 10.1016/j.corsci.2020.108464
9 Huang H L, Bu F R. Correlations between the inhibition performances and the inhibitor structures of some azoles on the galvanic corrosion of copper coupled with silver in artificial seawater [J]. Corros. Sci., 2020, 165: 108413
doi: 10.1016/j.corsci.2019.108413
10 Cui G D, Guo J X, Zhang Y, et al. Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution [J]. Carbohyd. Polym., 2019, 203: 386
doi: 10.1016/j.carbpol.2018.09.038
11 Arkhipushkin I A, Agafonkina M O, Kazansky L P, et al. Characterization of adsorption of 5-carboxy-3-amino-1,2,4-triazole towards copper corrosion prevention in neutral media [J]. Electrochim. Acta, 2019, 308: 392
doi: 10.1016/j.electacta.2019.04.014
12 Singh A, Ansari K R, Haque J, et al. Effect of electron donating functional groups on corrosion inhibition of mild steel in hydrochloric acid: experimental and quantum chemical study [J]. J. Taiwan Inst. Chem. Eng., 2018, 82: 233
doi: 10.1016/j.jtice.2017.09.021
13 Han Y F, Duan G Q, Wu F L, et al. Latest research progress of environmentally friendly corrosion inhibitors [J]. Total Corros. Control, 2016, 30(5): 57
韩跃飞, 段国强, 吴风岭 等. 环境友好型缓蚀剂的最新研究进展[J]. 全面腐蚀控制, 2016, 30(5): 57
14 Ma Y, Han F, Li Z, et al. Acidic-functionalized ionic liquid as corrosion inhibitor for 304 stainless steel in aqueous sulfuric acid [J]. ACS Sustainable Chem. Eng., 2016, 4: 5046
doi: 10.1021/acssuschemeng.6b01492
15 Verma C, Obot I B, Bahadur I, et al. Choline based ionic liquids as sustainable corrosion inhibitors on mild steel surface in acidic medium: gravimetric, electrochemical, surface morphology, DFT and Monte Carlo simulation studies [J]. Appl. Surf. Sci., 2018, 457: 134
doi: 10.1016/j.apsusc.2018.06.035
16 Likhanova N V, Arellanes-Lozada P, Olivares-Xometl O, et al. Effect of organic anions on ionic liquids as corrosion inhibitors of steel in sulfuric acid solution [J]. J. Mol. Liq., 2019, 279: 267
doi: 10.1016/j.molliq.2019.01.126
17 Feng L, Zhang S T, Qiang Y J, et al. The synergistic corrosion inhibition study of different chain lengths ionic liquids as green inhibitors for X70 steel in acidic medium [J]. Mater. Chem. Phys., 2018, 215: 229
doi: 10.1016/j.matchemphys.2018.04.054
18 Zaky M T, Nessim M I, Deyab M A. Synthesis of new ionic liquids based on dicationic imidazolium and their anti-corrosion performances [J]. J. Mol. Liq., 2019, 290: 111230
doi: 10.1016/j.molliq.2019.111230
19 Tan B C, Zhang S T, Qiang Y J, et al. Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium [J]. J. Mol. Liq., 2020, 298: 111975
doi: 10.1016/j.molliq.2019.111975
20 Parthipan P, Cheng L, Rajasekar A. Glycyrrhiza glabra extract as an eco-friendly inhibitor for microbiologically influenced corrosion of API 5LX carbon steel in oil well produced water environments [J]. J. Mol. Liq., 2021, 333: 115952
doi: 10.1016/j.molliq.2021.115952
21 Qiang Y J, Zhang S T, Wang L P. Understanding the adsorption and anticorrosive mechanism of DNA inhibitor for copper in sulfuric acid [J]. Appl. Surf. Sci., 2019, 492: 228
doi: 10.1016/j.apsusc.2019.06.190
22 Feng L, Zhang S T, Feng Y Y, et al. Self-aggregate nanoscale copolymer of new synthesized compounds efficiently protecting copper corrosion in sulfuric acid solution [J]. Chem. Eng. J., 2020, 394: 124909
23 Obot I B, Solomon M M, Umoren S A, et al. Progress in the development of sour corrosion inhibitors: past, present, and future perspectives [J]. J. Ind. Eng. Chem., 2019, 79: 1
doi: 10.1016/j.jiec.2019.06.046
24 Tan B C, Zhang S T, Qiang Y J, et al. A combined experimental and theoretical study of the inhibition effect of three disulfide-based flavouring agents for copper corrosion in 0.5 M sulfuric acid [J]. J. Colloid Interface Sci., 2018, 526: 268
doi: 10.1016/j.jcis.2018.04.092
25 Li X H, Deng S D, Fu H, et al. Synergistic inhibition effects of bamboo leaf extract/major components and iodide ion on the corrosion of steel in H3PO4 solution [J]. Corros. Sci., 2014, 78: 29
doi: 10.1016/j.corsci.2013.08.025
26 Zheng X W, Zhang S T, Li W P, et al. Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution [J]. Corros. Sci., 2015, 95: 168
doi: 10.1016/j.corsci.2015.03.012
27 Zhang M L, Zhao J M. Research progress of synergistic inhibition effect and mechanism [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1
张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展 [J]. 中国腐蚀与防护学报, 2016, 36: 1
28 Singh A, Ansari K R, Chauhan D S, et al. Comprehensive investigation of steel corrosion inhibition at macro/micro level by ecofriendly green corrosion inhibitor in 15% HCl medium [J]. J. Colloid Interface Sci., 2020, 560: 225
doi: 10.1016/j.jcis.2019.10.040
29 Lv X H, Zhang Y, Yan Y L, et al. Performance evaluation and adsorption behavior of two new mannich base corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 31
吕祥鸿, 张晔, 闫亚丽 等. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 31
30 Zhu H L, Li X F, Lu X M, et al. Intra-/inter-molecular synergistic inhibition effect of sulfonate surfactant and 2-benzothiazolethiol on carbon steel corrosion in 3.5%NaCl solution [J]. Corros. Sci., 2021, 182: 109291
doi: 10.1016/j.corsci.2021.109291
31 Fitoz A, Nazır H, Özgür M, et al. An experimental and theoretical approach towards understanding the inhibitive behavior of a nitrile substituted coumarin compound as an effective acidic media inhibitor [J]. Corros. Sci., 2018, 133: 451
doi: 10.1016/j.corsci.2017.10.004
[1] ZHANG Haibing, ZHANG Yihan, MA Li, XING Shaohua, DUAN Tigang, YAN Yonggui. Electrochemical Performance of Sacrificial Anodes in Alternating Depth and Shallowness of Seawater Environments[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[2] ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[3] CHEN Jiaqi, HOU Daolin, XIAO Han, GAO Yuwei, DONG Sheying. Corrosion Inhibition on Carbon Steel in Acidic Solution by Carbon Dots Prepared from Waste Longan Shells[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[4] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[5] YANG Xinyu, YANG Yuntian, LU Xiaopeng, ZHANG Tao, WANG Fuhui. Research Progress of Corrosion Inhibitor for Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[6] LI Hongjin, WANG Qishan, LIAO Zihan, SUN Xiangrui, SUN Hui, ZHANG Xinyang, CHEN Xu. Electrochemical Noise Behavior of X70 Steel and Its Weld in Cl--containing High pH Solution[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[7] WANG Jing, WANG Siyan, ZHANG Chong, WANG Wentao, CAO Xing, FAN Ning, XU Hongyan. Effect of Nitrogen Doping on Corrosion Inhibition Performance of Carbon Nanoparticles[J]. 中国腐蚀与防护学报, 2022, 42(1): 85-92.
[8] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[9] DING Cong, ZHANG Jinling, YU Yanchong, LI Yelei, WANG Shebin. Corrosion Kinetics of A572Gr.65 Steel in Different Simulated Soil Solutions[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[10] WANG Lizi, HUANG Miao, LI Xianghong. Synergistic Inhibition Effect of Walnut Green Husk Extract and Potassium Iodide on Corrosion of Steel in Citric Acid Solution[J]. 中国腐蚀与防护学报, 2021, 41(6): 819-827.
[11] MA Qi, CAI Jingshun, MU Song, ZHOU Xiaocheng, LIU Kai, LIU Jianzhong, LIU Jiaping. Composite Organic Compound as Corrosion Inhibitor for Reinforced Steel in Simulated Concrete Pore Solution or Mortar Specimen[J]. 中国腐蚀与防护学报, 2021, 41(5): 659-666.
[12] LUO Weiwen, JI Tao, LIN Kui. Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[13] WANG Laibin, LIU Xiahe, WANG Mei, GAO Junjie. Research Status and Progress on Growth Kinetics of Trivalent Chromium-based Conversion Film[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[14] YI Guanghui, ZHENG Dajiang, SONG Guangling. Influence of Acid Pickling on Morphology, Optical Parameters and Corrosion Resistance of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[15] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
No Suggested Reading articles found!