Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 785-790    DOI: 10.11902/1005.4537.2021.262
Current Issue | Archive | Adv Search |
Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution
ZHAO Guoxian1, WANG Yingchao1(), ZHANG Siqi1, SONG Yang2
1.School of Material Science and Technology, Xi'an Shiyou University, Xi'an 710065, China
2.Xi'an Maurer Petroleum Engineering Laboratory, Co. Ltd., Xi'an 710065, China
Download:  HTML  PDF(3228KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion characteristics of J55 steel in an artificial solution charged with 1.0 MPa CO2, 0.3 MPa H2S and 1.0 MPa CO2+0.3 MPa H2S respectively, in a high-temperature and high-pressure autoclave were studied via immersion corrosion test and electrochemical test, while the tested steels were characterized by means of XRD, SEM and EDS. The results show that in solutions charged with H2S and CO2+H2S the J55 steel presents the similar corrosion rate, and in the solution charged with CO2 the J55 steel exhibits the highest corrosion rate, accordingly, the formed corrosion product is the loose FeCO3 with low coverage. Comparatively, the corrosion product formed in the H2S charged solution is compact FeS, and the FeS generated in the CO2+H2S charged electrolyte is thinner and less compact. The in-situ electrochemical test at high temperature and high pressure showed that the corrosion process of J55 steel in the plain solution without charge of corrosive gas was controlled by the cathodic reaction. The charging H2S could result in the transformation of the controlled step from the cathodic reaction into anodic reaction, correspondingly, the corrosion potential increased significantly. The charging CO2 could strengthen the cathodic reaction control effect and reduce the corrosion potential. When CO2 and H2S coexisted, CO2 could promote the increase of the formation potential of FeS film. EIS diagram shows that the polarization resistance of J55 steel is the largest in the plain solution without corrosive gas, while the polarization resistance is the smallest in the solution charged with CO2 only, and two time-constants of high frequency capacitive arc and low frequency capacitive arc emerged for the J55 steel only in the H2S charged solution.

Key words:  J55 Steel      H2S corrosion      CO2corrosion      high temperature and high pressure electrochemistry     
Received:  27 September 2021     
ZTFLH:  TG174  
Corresponding Authors:  WANG Yingchao     E-mail:  879795654@qq.com
About author:  WANG Yingchao, E-mail: 879795654@qq.com

Cite this article: 

ZHAO Guoxian, WANG Yingchao, ZHANG Siqi, SONG Yang. Influence Mechanism of H2S/CO2-charging on Corrosion of J55 Steel in an Artificial Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 785-790.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.262     OR     https://www.jcscp.org/EN/Y2022/V42/I5/785

Fig.1  Corrosion rates of J55 steel in simulated environments of high-temperature autoclave
Fig.2  Surface morphologies (a1-c1) of J55 steel and EDS results (a2-c2) after corrosion in the simulated environments of 1.0 MPa CO2 (a), 0.3 MPa H2S (b) and 1.0 MPa CO2+0.3 MPa H2S (c)
Fig.3  XRD patterns of the corrosion products of J55 steel in three simulated environments
Fig.4  Polarization curves of J55 steel in four simulated environments
ConditionEcorr / mVI0 / μA·cm-2ba / mVbc / mV
1.3 MPa N2-657.84.30832.3693.60

1.0 MPa CO2+

0.3 MPa N2

-772.4119.023.03255.6

0.3 MPa H2S+

1.0 MPa N2

-406.528.8873.9452.53

1.0 MPa CO2+

0.3 MPa H2S

-382.616.5243.9195.28
Table 1  Fitting results of polarization curves of J55 steel under various test conditions
Fig.5  Electrochemical impedance spectra (a) and equivalent circuit diagrams of J55 steel in the test environments of 1.3 MPa N2, 0.3 MPa H2S+1.0 MPa N2, 0.3 MPa H2S+1.0 MPa CO2 (b) and 1.0 MPa CO2+0.3 MPa N2 (c)
Fig.6  Bode diagrams of J55 steel in four test environments
1 Li C Y, Zhuang H Z, Mao X P. Development and application study of J55 oil casing hot rolling steel strip [J]. Eng. Technol. Res., 2007, (3): 1
李春艳, 庄汉洲, 毛新平. J55钢级石油套管用热轧钢带开发及应用研究 [J]. 冶金丛刊, 2007, (3): 1
2 Mu L J, Zhang J, Zhao W Z, et al. Corrosion behavior of J55 steel in NaHCO3 solution [J]. Mater. Mech. Eng., 2010, 34(8): 15
慕立俊, 张军, 赵文轸 等. J55钢在NaHCO3溶液中的腐蚀行为 [J]. 机械工程材料, 2010, 34(8): 15
3 Wang J G, Meng L H, Fan Z Z, et al. Study on CO2 corrosion of steel N80 and steel J55 in the downhole [J]. Contemp. Chem. Ind., 2019, 48: 929
王继刚, 孟丽慧, 范振忠 等. CO2对井下N80钢和J55钢的腐蚀研究 [J]. 当代化工, 2019, 48: 929
4 Svenningsen G, Palencsár A, Kvarekvå J. Investigation of iron sulfide surface layer growth in aqueous H2S/CO2 environments [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
5 Banaś J, Lelek-Borkowska U, Mazurkiewicz B, et al. Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water [J]. Electrochim. Acta, 2007, 52: 5704
doi: 10.1016/j.electacta.2007.01.086
6 Bai H T, Wang Y Q, Ma Y, et al. Pitting corrosion and microstructure of J55 carbon steel exposed to CO₂/Crude Oil/Brine solution under 2-15 MPa at 30-80 ℃ [J]. Materials, 2018, 11: 2374
doi: 10.3390/ma11122374
7 Zhao J S, Ju Y J, Tang M R, et al. Experimental study on the corrosion behavior of produced fluid on J55 steel during CO2 flooding [J]. Key Eng. Mater., 2018, 773: 179
doi: 10.4028/www.scientific.net/KEM.773.179
8 Santos B A F, Souza R C, Serenario M E D, et al. The effect of different brines and temperatures on the competitive degradation mechanisms of CO2 and H2S in API X65 carbon steel [J]. J. Nat. Gas Sci. Eng., 2020, 80: 103405
doi: 10.1016/j.jngse.2020.103405
9 Sui P F, Sun J B, Hua Y, et al. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]. Int. J. Greenhouse Gas Control, 2018, 73: 60
doi: 10.1016/j.ijggc.2018.04.003
10 Hu L H, Chang W, Yu X Y, et al. Effect of partial pressure of CO2 on corrosion of carbon steel subsea pipeline in CO2/H2S environment [J]. Surf. Technol., 2016, 45(5): 56
胡丽华, 常炜, 余晓毅 等. CO2分压对碳钢海底管道CO2/H2S腐蚀的影响 [J]. 表面技术, 2016, 45(5): 56
11 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
葛鹏莉, 曾文广, 肖雯雯 等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
12 Xie J, Gao C Z, Shan X K, et al. Study on CO2-H2S corrosion behavior and mechanism of X65 steel [J] Pet. New Energy, 2020, 31(4): 13
谢俊, 高长征, 单晓琨 等. CO2-H2S对X65钢腐蚀行为研究 [J]. 石油规划设计, 2020, 31(4): 13
13 Wang Y F, Qu C T, Li J L, et al. Corrosion behavior of steel in H2S-CO2-CI- system [J]. Technol. Dev. Chem. Ind., 2020, 49(5): 20
王艳飞, 屈撑囤, 李金灵 等. 钢在H2S-CO2-Cl-体系中的腐蚀行为研究 [J]. 化工技术与开发, 2020, 49(5): 20
14 Zhang G A, Lu M X, Wu Y S. Effect of HCO3 - concentration on CO2 corrosion in gas and oil fields [J]. J. Electrochem., 2005, 11: 387
张国安, 路民旭, 吴荫顺. HCO3 -浓度对油气田中CO2腐蚀的影响 [J]. 电化学, 2005, 11: 387
15 Wang F, Li J, Li J L, et al. Corrosion behavior of metallic pipes in CO2/H2S environment [J]. Hot Work. Technol., 2021, 50(4): 1
王帆, 李娟, 李金灵 等. 金属管道在CO2/H2S环境中的腐蚀行为 [J]. 热加工工艺, 2021, 50(4): 1
16 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
doi: 10.1016/j.corsci.2017.10.005
17 Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
李鑫, 陈旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
18 Zhang J, Yuan H, Zhao G X, et al. Corrosion resistance of 028 nickel-based alloy in ultra high temperature containing CO2 environment [J]. Trans. Mater. Heat Treat., 2020, 41(6): 84
张钧, 袁和, 赵国仙 等. 028镍基合金在超高温含CO2环境中的耐腐蚀性能 [J]. 材料热处理学报, 2020, 41(6): 84
19 Sun Y, Zhang W X, Xu C X, et al. Effects of solution treatment on microstructure and corrosion properties of Mg-3.0Zn-0.6Y-0.5Zr-0.3Ca biological magnesium alloy [J]. Trans. Mater. Heat Treat., 2017, 38(9): 24
孙毅, 张文鑫, 许春香 等. 固溶处理对Mg-Zn-Y-Zr-Ca生物镁合金组织及腐蚀性能的影响 [J]. 材料热处理学报, 2017, 38(9): 24
20 Gu T, Tang D Z, Wang Z, et al. Effect of typical ions on the corrosion behavior of carbon steel in CO2 environment [J]. Nat. Gas Ind., 2019, 39(7): 106
谷坛, 唐德志, 王竹 等. 典型离子对碳钢CO2腐蚀的影响 [J]. 天然气工业, 2019, 39(7): 106
21 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
doi: 10.1016/j.corsci.2007.06.006
22 Zhang L, Guo D P, Lu M X. Effect of Cl- content on CO2 corrosion of J55 steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 64
张雷, 国大鹏, 路民旭. Cl-含量对J55钢CO2腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 64
23 Ituen E, Akaranta O, James A. Influence of clomipramine-based blends on corrosion behaviour of J55 steel in simulated oilfield acidizing solution [J]. J. Bio-Tribo-Corros., 2017, 3: 23
[1] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] Fengping WANG,Lan LIU,Yanwei DING,Suijun HU,Zhaobin LIU,Dan LIU,Li ZHANG. Simulation of Carbon Steel Corrosion in Oil-gas Field Produced Waters Containing Hydrogen Sulfide[J]. 中国腐蚀与防护学报, 2015, 35(3): 251-256.
[3] ZHANG Lei GUO Dapeng LU Minxu. EFFECT OF Cl- CONTENT ON CO2 CORROSION OF J55 STEEL[J]. 中国腐蚀与防护学报, 2009, 29(1): 64-68.
No Suggested Reading articles found!