Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 765-774    DOI: 10.11902/1005.4537.2020.205
Current Issue | Archive | Adv Search |
Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine
LU Lili1, LIU Lijun1, YAO Shenglian1, LI Huafang1, WANG Luning1,2()
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(15161KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zn-based materials have been adopted as candidate material of biodegradable implants and some researches give the evidence that Zn-based materials are promising as degradable scaffold. This paper will reveal the degradation behavior of Zn-xLi (x=0, 0.5%, 0.8%) alloys in artificial urine (AU). The corrosion behavior of pure Zn and Zn-xLi alloys in AU up to 28 d were investigated by means of immersion test and electrochemical approach. The results indicate that even the Zn and Zn-xLi alloys display encrustation in artificial urine, however, the encrustation degree in the present study was alleviated compared with other alloys studied previously, which seems a very encouraging phenomenon in the application for ureteral stent implantation. The corrosion products of the Zn and Zn-xLi alloys in AU was CaZn2(PO4)2·2H2O and the corresponding corrosion rate was in the range of 0.21 to 0.34 mm·a-1 for the Zn and Zn-xLi alloys after immersion for 28 d.

Key words:  degradation      Zn-Li alloy      ureteral stent      artificial urine     
Received:  22 October 2020     
ZTFLH:  TG172  
Fund: National Key Research and Development Program of China(2016YFC251100);National Natural Science Foundation of China(51503014)
Corresponding Authors:  WANG Luning     E-mail:  luning.wang@ustb.edu.cn
About author:  WANG Luning, E-mail: luning.wang@ustb.edu.cn

Cite this article: 

LU Lili, LIU Lijun, YAO Shenglian, LI Huafang, WANG Luning. Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 765-774.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.205     OR     https://www.jcscp.org/EN/Y2021/V41/I6/765

Fig.1  OCPwith respect to time at different immersion periods of pure Zn (a), Zn-0.5Li (b), Zn-0.8Li (c) and OCP of pure Zn as a function of immersion time (d)
Fig.2  PDP curves at different immersion periods in AU of pure Zn (a), Zn-0.5Li (b), Zn-0.8Li (c) and the current density obtained from PDP curves (d)
Samplet / dEcorr / V vs SCEIcorr / µA·cm-2c / V·dec-1
Pure Zn0-1.13±0.0136.23±19.860.21±0.01
3-1.06±0.0117.36±1.760.26±0.02
7-1.01±0.0011.37±1.030.42±0.01
14-1.02±0.0117.46±2.640.55±0.15
21-1.02±0.0118.89±5.120.49±0.12
28-1.05±0.0222.74±3.680.46±0.16
Zn-0.5Li0-1.11±0.0544.27±6.790.25±0.07
3-1.05±0.0115.34±5.750.41±0.14
7-1.05±0.0118.14±1.240.39±0.03
14-1.06±0.0117.98±3.490.40±0.07
21-1.06±0.0117.82±2.060.28±0.04
28-1.05±0.0118.08±2.610.39±0.01
Zn-0.8Li0-1.13±0.0031.38±8.710.21±0.05
3-1.04±0.0119.88±4.470.41±0.08
7-1.03±0.0217.52±0.470.40±0.00
14-1.05±0.0118.33±2.030.42±0.05
21-1.05±0.0018.14±2.040.36±0.09
28-1.06±0.0126.21±2.750.35±0.06
Table 1  Polarization data of the pure Zn/Zn-xLi at different immersion periods in AU
Fig.3  Nyquist diagrams of pure Zn (a), Zn-0.5Li (b), Zn-0.8Li (c) after immersion for different periods in AU, equivalent electrical circuit (d) and changes of Rf (e) and Rt (f) with immersion time
Samplet / dRs / Ω·cm2Qf / 10-5·Ω-1·s-1·cm-2n1Rf / kΩ·cm2Qdl / 10-3 Ω-1·s-1·cm-2n2Rct / kΩ·cm2Rt / kΩ·cm2
Pure Zn05.94±1.640.02±0.010.56±0.010.05±0.015.26±0.370.84±0.070.28±0.390.33±0.11
38.74±0.632.10±1.380.84±0.080.16±0.083.24±1.610.50±0.020.95±0.321.11±0.40
78.80±0.371.03±0.100.91±0.011.36±0.357.24±3.840.77±0.250.62±0.171.98±0.33
148.65±1.541.04±0.090.91±0.010.78±0.123.10±0.500.10±0.070.70±0.301.54±0.39
219.38±0.082.11±0.720.82±0.000.49±0.136.12±0.930.66±0.050.55±0.101.04±0.03
289.12±1.633.41±2.240.81±0.090.30±0.23.17±2.320.54±0.130.77±0.301.07±0.50
Zn-0.5Li011.28±1.040.39±0.010.75±0.070.04±0.010.39±0.180.71±0.120.20±0.010.33±0.15
310.16±0.300.54±0.070.92±0.011.62±0.821.05±0.740.56±0.741.73±1.245.05±1.72
710.52±0.350.85±0.220.91±0.020.51±0.282.04±0.010.53±0.042.50±0.594.84±2.28
1410.37±1.002.09±0.590.85±0.030.35±0.022.70±0.650.49±0.084.09±2.953.64±2.04
2110.49±0.603.46±0.600.79±0.030.27±0.112.86±0.980.67±0.104.79±1.336.32±5.55
2810.12±0.472.32±0.380.84±0.020.37±0.164.03±1.440.56±0.065.25±3.447.28±6.43
Zn-0.8Li011.04±0.360.24±0.220.81±0.020.04±0.032.65±0.890.90±0.141.12±1.200.28±0.08
311.33±0.781.19±0.400.88±0.040.42±0.172.77±0.860.65±0.121.83±0.602.25±0.53
712.95±1.921.68±1.110.85±0.100.69±0.012.60±0.680.65±0.221.52±0.872.21±0.87
1410.18±0.332.03±1.030.85±0.050.33±0.183.02±0.690.56±0.091.24±0.691.57±0.65
2110.28±0.791.82±0.540.85±0.040.31±0.063.17±0.640.53±0.052.05±1.322.36±1.32
2810.87±0.054.60±0.210.76±0.020.20±0.044.33±1.180.53±0.030.95±0.251.51±0.25
Table 2  Fitted electrochemical parameters for Zn/Zn-xLi in AU
Time / dPure ZnZn-0.5LiZn-0.8Li
00.54±0.300.52±0.080.37±0.01
30.26±0.030.18±0.070.23±0.05
70.17±0.020.21±0.010.21±0.01
140.26±0.040.21±0.040.22±0.02
210.28±0.080.21±0.030.21±0.02
280.34±0.050.21±0.030.31±0.03
Table 3  Corrosion rates of pure Zn and Zn-xLi in AU obtained from the electrochemical measurements (mm·a-1)
Fig.4  SEM images of pure Zn (a1~e1), Zn-0.5Li (a2~e2) and Zn-0.8Li (a3~e3) immersed in AU after 3 d (a), 7 d (b), 14 d (c), 21 d (d) and 28 d (e)
Time / dPure ZnZn-0.5LiZn-0.8Li
30.66±1.120.24±0.010.20±0.02
70.77±0.140.59±0.030.38±0.03
140.84±0.040.82±0.050.57±0.07
210.82±0.010.78±0.110.84±0.04
280.76±0.040.77±0.030.88±0.01
Table 4  Atomic ratio of P/Zn on the surfaces after immersed in AU for different time
Fig.5  Cross-section of pure Zn (a1~c1), Zn-0.5Li (a2~c2) and Zn-0.8Li (a3~c3) immersed in AU after 3 d (a), 14 d (b) and 28 d (c)
Fig.6  Variation of pH vibration (a), Zn2+ release of AU (b) and encrustation (c) of pure Zn, Zn-0.5Li and Zn-0.8Li during the immersion in AU at different time interval
Fig.7  XRD analysis of surface pure Zn (a), Zn-0.5Li (b) and Zn-0.8Li (c)
Fig.8  Schematic illustration of corrosion process of Zn and Zn-xLi alloys in the AU: (a) first stage, (b) second stage, (c) third stage
Time / dNiTi316LSS316LCuSSPure ZnZn-0.5LiZn-0.8Li
144.54.13.92.4±0.11.8±0.10.5±0.1
285.15.24.91.5±0.02.0±0.50.9±0.2
Table 6  Encrustation of Zn/Zn-xLi and some other alloys (mg·cm-2)
1 Lin L Y, Liu Q H. Clinical efficacy and safety of URSL in the treatment of ureteral calculi in different position [J]. Jilin Med. J., 2020, 41: 1822
林立英, 刘渠贺. 输尿管镜钬激光碎石术 (URSL) 治疗不同部位输尿管结石的临床疗效及安全性研究 [J]. 吉林医学, 2020, 41: 1822
2 Chaabouni A, Binous M Y, Zakhama W, et al. Spontaneous calyceal rupture caused by a ureteral calculus [J]. Afr. J. Urol., 2013, 19: 191
3 Cho C L. A knotted ureteral stent [J]. Urol. Case Rep., 2020, 33: 101327
4 Irani J, Siquier J, Pirès C, et al. Symptom characteristics and the development of tolerance with time in patients with indwelling double-pigtail ureteric stents [J]. BJU Int., 1999, 84: 276
5 Lorca A J, Laso G, Arias F F, et al. Self-expanding metallic ureteral stents in complex ureteral stenosis: Long-term results after two decades of experience [J]. Eur.Urol. , 2019, 18: e3014
6 Wang H J, Lee T Y, Luo H L, et al. Application of resonance metallic stents for ureteral obstruction [J]. BJU Int., 2011, 108: 428
7 Zhao J, Cao Z Q, Ren L, et al. A novel ureteral stent material with antibacterial and reducing encrustation properties [J]. Mater. Sci. Eng., 2016, 68C: 221
8 Frattolin J, Roy R, Rajagopalan S, et al. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material [J]. Acta Biomater., 2019, 99: 479
9 Scarcello E, Lobysheva I, Bouzin C, et al. Endothelial dysfunction induced by hydroxyl radicals-the hidden face of biodegradable Fe-based materials for coronary stents [J]. Mater. Sci. Eng., 2020, 112C: 110938
10 Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies [J]. Acta Biomater., 2010, 6: 1852
11 Wang S, Zhang X Q, Li J G, et al. Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material [J]. Bioact. Mater., 2020, 5: 1
12 Zhang J, Li H Y, Wang W, et al. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]. Acta Biomater., 2018, 69: 372
13 Mao L, Zhou H, Chen L, et al. Enhanced biocompatibility and long-term durability in vivo of Mg-Nd-Zn-Zr alloy for vascular stent application [J]. J. Alloy. Compd., 2017, 720: 245
14 Hanada K, Matsuzaki K, Huang X S, et al. Fabrication of Mg alloy tubes for biodegradable stent application [J]. Mater. Sci. Eng., 2013, 33C: 4746
15 Zhang S Y, Zheng Y, Zhang L M, et al. In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model [J]. Mater. Sci. Eng., 2016, 68C: 414
16 Mostaed E, Sikora-Jasinska M, Mostead A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
17 Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
18 Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
19 Liu X, Yang H T, Xiong P, et al. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions [J]. Corros. Sci., 2019, 157: 205
20 Yue R, Niu J L, Li Y T, et al. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications [J]. Mater. Sci. Eng., 2020, 113C: 111007
21 Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
22 Champagne S, Mostaed E, Safizadeh F, et al. In vitro degradation of absorbable zinc alloys in artificial urine [J]. Materials, 2019, 12: 295
23 Paramitha D, Chabaud S, Bolduc S, et al. Biological assessment of Zn-based absorbable metals for ureteral stent applications [J]. Materials, 2019, 12: 3325
24 Liu F, Chen C X, Niu J L, et al. The processing of Mg alloy micro-tubes for biodegradable vascular stents [J]. Mater. Sci. Eng., 2015, 48C: 400
25 Hao Y. Fabrication, mechanical properties and biocompatibility of biodegradable Zn-Li alloy [D]. Beijing: University of Science & Technology Beijing, 2018
郝园. 可降解Zn-Li合金的制备及性能研究 [D]. 北京: 北京科技大学, 2018
26 Hu H F. The in vitro study on the biodegradability and the release behavior of a novel biodegradable material of drug-loading ureteral stents [D]. Wuhan: Huazhong University of Science and Technology, 2013
胡海峰. 输尿管支架材料降解性能和药物释放性能的研究 [D]. 武汉: 华中科技大学, 2013
27 Guo G C, Mo Z Y, Wu Q Y, et al. Effect of rare earth element cerium on Zinc phosphating process at middle temperature [J]. Electroplat. Pollut. Control, 2018, 38(4): 37
郭国才, 莫振宇, 吴清源等. 稀土铈对中温锌系磷化的影响 [J]. 电镀与环保, 2018, 38(4): 37
28 Ren B B. Study on evaluation method of phosphating film quality of cold rolled car plate [J]. China Coat., 2018, 33(1): 66
任彬彬. 冷轧汽车板磷化膜品质的评价方法研究 [J]. 中国涂料, 2018, 33(1): 66
29 Xin Y C, Huo K F, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment [J]. Acta Biomater., 2008, 4: 2008
30 Sziráki L, Szőcs E, Pilbáth Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques [J]. Electrochim. Acta, 2001, 46: 3743
31 Jia Y Z, Wang B J, Zhao M J, et al. Effect of solid solution treatment on corrosion and hydrogen evolution behavior of an As-extruded Mg-Zn-Y-Nd alloy in an artificial body fluid [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 351
郏义征, 王保杰, 赵明君等. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究 [J]. 中国腐蚀与防护学报, 2020, 40: 351
32 Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 36: 463
郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 36: 463
33 Mou Z Q, Liang C H. Effect of different artificial body fluids and their pH on corrosion of biomedical mettallic materials [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 126
牟战旗, 梁成浩. 不同模拟体液及pH值变化对人体用金属生物材料耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 126
34 Wang J, Liu L. The research progress of urine pH change and urolithiasis [J]. J. Guiyang Coll. TCM, 2015, 37(4): 98
汪建, 刘玲. 尿液pH改变与尿石症的研究进展 [J]. 贵阳中医学院学报, 2015, 37(4): 98
35 Zhou M Y. Effect of free F- and oxidant on phosphating of Al-Mg alloy [J]. Mater. Prot., 1998, 31(7): 13
周谟银. 游离F-和氧化剂对铝镁合金 (LF2) 磷化过程的影响 [J]. 材料保护, 1998, 31(7): 13
36 Dai C L, Li Z, Zhang Q G, et al. Film forming mechanism of calcium-modified phosphating coating on galvanized steel [J]. Electroplat. Pollut. Control, 2007, 27(6): 26
戴崇良, 李智, 张强国等. 镀锌钢板钙改性磷化膜生长机理的研究 [J]. 电镀与环保, 2007, 27(6): 26
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Degradation Behavior of Solvent-free Epoxy Coatings in Simulated Flowing Sea Water with Sand by Different Flow Rates[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[3] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[4] YANG Hai, LU Weizhong, LI Jing, SUN Chao. Degradation Behavior of Fusion Bonded Epoxy Powder Coating on Q235 Carbon Steel in 1.5 mol/L NaCl Solution[J]. 中国腐蚀与防护学报, 2014, 34(4): 382-388.
[5] CAI Jianping, LIU Ming, AN Yinghui. DEGRADATION KINETICS OF PROTECTIVE COATING FOR ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(3): 256-261.
[6] YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
[7] LIU Haoyu, LIANG Xiaofeng, SHAO Yawei, MENG Guozhe,ZHANG Tao, WANG Fuhui. EFFECT OF HYDROSTATIC PRESSURE OF 3.5%NaCl SOLUTION ON THE CORROSION BEHAVIOR OF EPOXY COATING[J]. 中国腐蚀与防护学报, 2010, 30(5): 374-378.
[8] PAN Taijun; LIN Yifan; HU Jing. ACCELERATED CORROSION BEHAVIOR OF Fe-Al ALLOYS UNDER KCl-ZnCl2 DEPOSITS[J]. 中国腐蚀与防护学报, 2010, 30(1): 58-61.
[9] HU Jianwen GAO Jin LI Xiaogang DU Cuinv. AN INVESTIGATION OF UV PHOTO-DEGRADATION ON ACRYLIC POLYURETHANE VARNISH COATINGS[J]. 中国腐蚀与防护学报, 2009, 29(5): 371-375.
[10] YANG Xiaogang SHAO Liyan ZHANG Shufang JIAO Wei LI Yantao HOU Baorong. CORROSION INHIBITION PROPERTIES OF WATER SOLUBLE CHITOSAN AND ITS DEGRADATION PRODUCTS FOR MILD STEEL IN SEAWATER[J]. 中国腐蚀与防护学报, 2008, 28(6期): 325-330.
[11] ;. The Progress of the Studies on the Cathodic Delamination of Organic Coatings from Metal[J]. 中国腐蚀与防护学报, 2008, 28(2): 116-120 .
[12] Yinghua Wei; Lixin Zhang; Wei Ke. ACCELERATING DEGRADATION OF ORGANIC PROTECTION COATING UNDER FLOW STATE[J]. 中国腐蚀与防护学报, 2006, 26(1): 43-47 .
[13] Yongxiang Xv. UV PHOTO-DEGRADATION OF COATINGS[J]. 中国腐蚀与防护学报, 2004, 24(3): 168-173 .
[14] LIN Changjian; RUAN Ting (State Key Laboratory Physical Chemistry for the Solid Surface;Department of Chemistry; Xiamen University; China)(National Institute of Standards and Technolopy; USA). APPLICATION OF FTIR-MIR FOR IN SITU MEASUREMENT OF WATER AT POLYMERIC COATING/METAL INTERFACE[J]. 中国腐蚀与防护学报, 1996, 16(4): 241-246.
No Suggested Reading articles found!