|
|
Degradation Behavior of Pure Zinc and Zn-xLi Alloy in Artificial Urine |
LU Lili1, LIU Lijun1, YAO Shenglian1, LI Huafang1, WANG Luning1,2( ) |
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Zn-based materials have been adopted as candidate material of biodegradable implants and some researches give the evidence that Zn-based materials are promising as degradable scaffold. This paper will reveal the degradation behavior of Zn-xLi (x=0, 0.5%, 0.8%) alloys in artificial urine (AU). The corrosion behavior of pure Zn and Zn-xLi alloys in AU up to 28 d were investigated by means of immersion test and electrochemical approach. The results indicate that even the Zn and Zn-xLi alloys display encrustation in artificial urine, however, the encrustation degree in the present study was alleviated compared with other alloys studied previously, which seems a very encouraging phenomenon in the application for ureteral stent implantation. The corrosion products of the Zn and Zn-xLi alloys in AU was CaZn2(PO4)2·2H2O and the corresponding corrosion rate was in the range of 0.21 to 0.34 mm·a-1 for the Zn and Zn-xLi alloys after immersion for 28 d.
|
Received: 22 October 2020
|
|
Fund: National Key Research and Development Program of China(2016YFC251100);National Natural Science Foundation of China(51503014) |
Corresponding Authors:
WANG Luning
E-mail: luning.wang@ustb.edu.cn
|
About author: WANG Luning, E-mail: luning.wang@ustb.edu.cn
|
1 |
Lin L Y, Liu Q H. Clinical efficacy and safety of URSL in the treatment of ureteral calculi in different position [J]. Jilin Med. J., 2020, 41: 1822
|
|
林立英, 刘渠贺. 输尿管镜钬激光碎石术 (URSL) 治疗不同部位输尿管结石的临床疗效及安全性研究 [J]. 吉林医学, 2020, 41: 1822
|
2 |
Chaabouni A, Binous M Y, Zakhama W, et al. Spontaneous calyceal rupture caused by a ureteral calculus [J]. Afr. J. Urol., 2013, 19: 191
|
3 |
Cho C L. A knotted ureteral stent [J]. Urol. Case Rep., 2020, 33: 101327
|
4 |
Irani J, Siquier J, Pirès C, et al. Symptom characteristics and the development of tolerance with time in patients with indwelling double-pigtail ureteric stents [J]. BJU Int., 1999, 84: 276
|
5 |
Lorca A J, Laso G, Arias F F, et al. Self-expanding metallic ureteral stents in complex ureteral stenosis: Long-term results after two decades of experience [J]. Eur.Urol. , 2019, 18: e3014
|
6 |
Wang H J, Lee T Y, Luo H L, et al. Application of resonance metallic stents for ureteral obstruction [J]. BJU Int., 2011, 108: 428
|
7 |
Zhao J, Cao Z Q, Ren L, et al. A novel ureteral stent material with antibacterial and reducing encrustation properties [J]. Mater. Sci. Eng., 2016, 68C: 221
|
8 |
Frattolin J, Roy R, Rajagopalan S, et al. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material [J]. Acta Biomater., 2019, 99: 479
|
9 |
Scarcello E, Lobysheva I, Bouzin C, et al. Endothelial dysfunction induced by hydroxyl radicals-the hidden face of biodegradable Fe-based materials for coronary stents [J]. Mater. Sci. Eng., 2020, 112C: 110938
|
10 |
Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies [J]. Acta Biomater., 2010, 6: 1852
|
11 |
Wang S, Zhang X Q, Li J G, et al. Investigation of Mg-Zn-Y-Nd alloy for potential application of biodegradable esophageal stent material [J]. Bioact. Mater., 2020, 5: 1
|
12 |
Zhang J, Li H Y, Wang W, et al. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study [J]. Acta Biomater., 2018, 69: 372
|
13 |
Mao L, Zhou H, Chen L, et al. Enhanced biocompatibility and long-term durability in vivo of Mg-Nd-Zn-Zr alloy for vascular stent application [J]. J. Alloy. Compd., 2017, 720: 245
|
14 |
Hanada K, Matsuzaki K, Huang X S, et al. Fabrication of Mg alloy tubes for biodegradable stent application [J]. Mater. Sci. Eng., 2013, 33C: 4746
|
15 |
Zhang S Y, Zheng Y, Zhang L M, et al. In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model [J]. Mater. Sci. Eng., 2016, 68C: 414
|
16 |
Mostaed E, Sikora-Jasinska M, Mostead A, et al. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation [J]. J. Mech. Behav. Biomed. Mater., 2016, 60: 581
|
17 |
Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
|
18 |
Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
|
19 |
Liu X, Yang H T, Xiong P, et al. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions [J]. Corros. Sci., 2019, 157: 205
|
20 |
Yue R, Niu J L, Li Y T, et al. In vitro cytocompatibility, hemocompatibility and antibacterial properties of biodegradable Zn-Cu-Fe alloys for cardiovascular stents applications [J]. Mater. Sci. Eng., 2020, 113C: 111007
|
21 |
Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
|
22 |
Champagne S, Mostaed E, Safizadeh F, et al. In vitro degradation of absorbable zinc alloys in artificial urine [J]. Materials, 2019, 12: 295
|
23 |
Paramitha D, Chabaud S, Bolduc S, et al. Biological assessment of Zn-based absorbable metals for ureteral stent applications [J]. Materials, 2019, 12: 3325
|
24 |
Liu F, Chen C X, Niu J L, et al. The processing of Mg alloy micro-tubes for biodegradable vascular stents [J]. Mater. Sci. Eng., 2015, 48C: 400
|
25 |
Hao Y. Fabrication, mechanical properties and biocompatibility of biodegradable Zn-Li alloy [D]. Beijing: University of Science & Technology Beijing, 2018
|
|
郝园. 可降解Zn-Li合金的制备及性能研究 [D]. 北京: 北京科技大学, 2018
|
26 |
Hu H F. The in vitro study on the biodegradability and the release behavior of a novel biodegradable material of drug-loading ureteral stents [D]. Wuhan: Huazhong University of Science and Technology, 2013
|
|
胡海峰. 输尿管支架材料降解性能和药物释放性能的研究 [D]. 武汉: 华中科技大学, 2013
|
27 |
Guo G C, Mo Z Y, Wu Q Y, et al. Effect of rare earth element cerium on Zinc phosphating process at middle temperature [J]. Electroplat. Pollut. Control, 2018, 38(4): 37
|
|
郭国才, 莫振宇, 吴清源等. 稀土铈对中温锌系磷化的影响 [J]. 电镀与环保, 2018, 38(4): 37
|
28 |
Ren B B. Study on evaluation method of phosphating film quality of cold rolled car plate [J]. China Coat., 2018, 33(1): 66
|
|
任彬彬. 冷轧汽车板磷化膜品质的评价方法研究 [J]. 中国涂料, 2018, 33(1): 66
|
29 |
Xin Y C, Huo K F, Tao H, et al. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment [J]. Acta Biomater., 2008, 4: 2008
|
30 |
Sziráki L, Szőcs E, Pilbáth Z, et al. Study of the initial stage of white rust formation on zinc single crystal by EIS, STM/AFM and SEM/EDS techniques [J]. Electrochim. Acta, 2001, 46: 3743
|
31 |
Jia Y Z, Wang B J, Zhao M J, et al. Effect of solid solution treatment on corrosion and hydrogen evolution behavior of an As-extruded Mg-Zn-Y-Nd alloy in an artificial body fluid [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 351
|
|
郏义征, 王保杰, 赵明君等. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究 [J]. 中国腐蚀与防护学报, 2020, 40: 351
|
32 |
Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2019, 36: 463
|
|
郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 36: 463
|
33 |
Mou Z Q, Liang C H. Effect of different artificial body fluids and their pH on corrosion of biomedical mettallic materials [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 126
|
|
牟战旗, 梁成浩. 不同模拟体液及pH值变化对人体用金属生物材料耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 126
|
34 |
Wang J, Liu L. The research progress of urine pH change and urolithiasis [J]. J. Guiyang Coll. TCM, 2015, 37(4): 98
|
|
汪建, 刘玲. 尿液pH改变与尿石症的研究进展 [J]. 贵阳中医学院学报, 2015, 37(4): 98
|
35 |
Zhou M Y. Effect of free F- and oxidant on phosphating of Al-Mg alloy [J]. Mater. Prot., 1998, 31(7): 13
|
|
周谟银. 游离F-和氧化剂对铝镁合金 (LF2) 磷化过程的影响 [J]. 材料保护, 1998, 31(7): 13
|
36 |
Dai C L, Li Z, Zhang Q G, et al. Film forming mechanism of calcium-modified phosphating coating on galvanized steel [J]. Electroplat. Pollut. Control, 2007, 27(6): 26
|
|
戴崇良, 李智, 张强国等. 镀锌钢板钙改性磷化膜生长机理的研究 [J]. 电镀与环保, 2007, 27(6): 26
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|