Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 501-507    DOI: 10.11902/1005.4537.2021.043
Current Issue | Archive | Adv Search |
Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy
SUN Xiaoguang1,2, WANG Zihan2, XU Xuexu2(), HAN Xiaohui1, LI Gangqing1, LIU Zhiyong2
1.Technical Engineering Department, CRRC Qingdao Sifang Co. LTD. , Qingdao 266111, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(6232KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion fatigue characteristics of the Al-Mg-Si alloy and its butt welded joints in a simulated industrial atmosphere are studied by means of mechanical performance test, axial force loading fatigue test, scanning electron microscope, electrochemical test and other methods. The results show that the mechanical properties of butt-welded joints of Al-Mg-Si alloy are lower than that of the base metal, and the welded joints are more prone to corrosion in the simulated industrial atmosphere. The corrosion fatigue sensitivity of welded joints is higher, the corrosion fatigue cracks of the base metal initiate from corrosion pits at grain boundaries, while the fatigue cracks of the welded joints initiate easily at the locations rich in welding defects and inclusions of the weld seam. The existence of large number of welding defects and Al2O3 inclusions introduced during the welding process may be responsible to why the corrosion fatigue performance of the welded joints of Al-Mg-Si alloy is lower than that of the base metal. Besides, the presence of inclusions will induce stress concentration, and around which high-density lattice distortion areas will also emerge. These areas will act as anodes to be preferentially dissolved and thereby, where to become the priority area of corrosion fatigue crack initiation, eventually lead to fatigue fracture of the test piece. Therefore, for the actual production, the forming process and welding process should be optimized, and the number of welding defects and inclusions should be controlled, so as to improve the corrosion fatigue performance of the alloy.

Key words:  Al-Mg-Si alloy      welded joint      corrosion fatigue characteristic      simulated industrial atmosphere     
Received:  08 March 2021     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52071017);National Key Research and Development Program of China(2017YFB0702300)
Corresponding Authors:  XU Xuexu     E-mail:  xuxuexu1992@163.com
About author:  XU Xuexu, E-mail: xuxuexu1992@163.com

Cite this article: 

SUN Xiaoguang, WANG Zihan, XU Xuexu, HAN Xiaohui, LI Gangqing, LIU Zhiyong. Effect of Industrial Atmospheric Environment on Corrosion Fatigue Behavior of Al-Mg-Si Alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 501-507.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.043     OR     https://www.jcscp.org/EN/Y2021/V41/I4/501

Fig.1  Macromorphology of Al-Mg-Si alloy welded joint
Fig.2  Stress-strain tensile curves of Al-Mg-Si alloy base metal and welded joint
Fig.3  Polarization curves (a) and electrochemical impedance spectroscopy (b) of Al-Mg-Si alloy base metal and welded joints
Fig.4  Fitting circuit diagram of electrochemical impedance spectroscopy of Al-Mg-Si alloy base metal and welded joints
PositionEcorr / VIp / A·cm-2Rs / Ω·cm2Rf / Ω·cm2Rct / Ω·cm2
Base metal-0.551.94×10-5232.8506.94442
Welded joint-0.572.52×10-5282.1400.63173
Table 1  Electrochemical corrosion parameters of Al-Mg-Si Alloy base metal and welded joints
Fig.5  Fatigue cycle-peak stress histogram (a) and fatigue cycle-peak stress/yield strength histogram (b) of Al-Mg-Si alloy base and welded joint in simulated industrial atmosphere
Fig.6  Macromorphologies of the Al-Mg-Si alloy base metal with 150 MPa (a) and welded joint with 80 MPa (b) samples after the corrosion fatigue test in the simulated industrial atmosphere
Fig.7  Microscopic morphologies of the corrosion fatigue fracture of the Al-Mg-Si alloy base metal with 150 MPa (a~c) and welded joint with 80 MPa (d~f) in simulated industrial atmosphere
Fig.8  Morphologies (a~c) and EDS analysis results (d, e) of the corrosion fatigue fracture of Al-Mg-Si alloy welded joints in a simulated industrial atmosphere with a peak stress with 80 MPa
1 Winter L, Hockauf K, Lampke T. High cycle fatigue behavior of the severely plastically deformed 6082 aluminum alloy with an anodic and plasma electrolytic oxide coating [J]. Surf. Coat. Technol., 2018, 349: 576
2 Xu X C, Liu D X, Zhang X H, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling [J]. J. Mater. Sci. Technol., 2020, 40: 88
3 Costa J D M, Jesus J S, Loureiro A, et al. Fatigue life improvement of MIG welded aluminium T-joints by friction stir processing [J]. Int. J. Fatigue, 2014, 61: 244
4 Dong P, Sun D Q, Li H M. Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy [J]. Mater. Sci. Eng., 2013, A576: 29
5 Svenningsen G, Lein J E, Bjørgum A, et al. Effect of low copper content and heat treatment on intergranular corrosion of model AlMgSi alloys [J]. Corros. Sci., 2006, 48: 226
6 Liu H B, Yang S L, Xie C J, et al. Microstructure characterization and mechanism of fatigue crack initiation near pores for 6005A CMT welded joint [J]. Mater. Sci. Eng., 2017, A707: 22
7 Liu F Y, Tan C W, Wu L J, et al. Influence of waveforms on Laser-MIG hybrid welding characteristics of 5052 aluminum alloy assisted by magnetic field [J]. Opt. Laser Technol., 2020, 132: 106508
8 Qiao J N, Lu J X, Wu S K. Fatigue cracking characteristics of fiber Laser-VPTIG hybrid butt welded 7N01P-T4 aluminum alloy [J]. Int. J. Fatigue, 2017, 98: 32
9 Genel K. The effect of pitting on the bending fatigue performance of high-strength aluminum alloy [J]. Scr. Mater., 2007, 57: 297
10 Pao P S, Gill S J, Feng C R, et al. Corrosion-fatigue crack growth in friction stir welded Al 7050 [J]. Scr. Mater., 2001, 45: 605
11 Czechowski M. Low-cycle fatigue of friction stir welded Al-Mg alloys [J]. J. Mater. Process. Technol., 2005, 164/165: 1001
12 Fonda R W, Pao P S, Jones H N, et al. Microstructure, mechanical properties, and corrosion of friction stir welded Al 5456 [J]. Mater. Sci. Eng., 2009, A519: 1
13 Sabelkin V, Mall S, Misak H. Investigation into corrosion pit-to-fatigue crack transition in 7075-T6 aluminum alloy [J]. J. Mater. Eng. Perform., 2017, 26: 2535
14 Chanyathunyaroj K, Phetchcrai S, Laungsopapun G, et al. Fatigue characteristics of 6061 aluminum alloy subject to 3.5%NaCl environment [J]. Int. J. Fatigue, 2020, 133: 105420
15 Cui T F, Liu D X, Cai J, et al. Effect of pre-corrosion and corrosion/fatigue alternation frequency on the fatigue life of 7B04-T6 aluminum alloy [J]. J. Mater. Res., 2016, 31: 3869
16 Xu X X, Liu Z Y, Zhao T L, et al. Corrosion fatigue behavior of Fe-16Mn-0.6C-1.68Al twinning-induced plasticity steel in simulated seawater [J]. Corros. Sci., 2021, 182: 109282
17 Li X D, Mu Z T, Su W G, et al. Corrosion fatigue fracture analysis of 6A02 aluminum alloy [J]. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.), 2013, 34: 285
李旭东, 穆志韬, 苏维国等. 6A02铝合金腐蚀疲劳断口分析 [J]. 青岛科技大学学报 (自然科学版), 2013, 34: 285
18 Dickerson T L, Przydatek J. Fatigue of friction stir welds in aluminium alloys that contain root flaws [J]. Int. J. Fatigue, 2003, 25: 1399
19 Costa J D, Ferreira J A M, Borrego L P, et al. Fatigue behaviour of AA6082 friction stir welds under variable loadings [J]. Int. J. Fatigue, 2012, 37: 8
20 Talemi R. A numerical study on effects of randomly distributed subsurface hydrogen pores on fretting fatigue behaviour of aluminium AlSi10Mg [J]. Tribol. Int., 2020, 142: 105997
21 Shahri M M, Sandström R. Fatigue analysis of friction stir welded aluminium profile using critical distance [J]. Int. J. Fatigue, 2010, 32: 302
22 Liu C, Revilla R I, Zhang D W, et al. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment [J]. Corros. Sci., 2018, 138: 96
23 Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying [J]. Corros. Sci., 2020, 170: 108693
[1] QIAO Zhongli, WANG Ling, SHI Yanhua, YANG Zongkui. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[2] CANG Yu, HUANG Yuhui, WENG Shuo, XUAN Fuzhen. Effect of Environmental Variables on Galvanic Corrosion Performance of Welded Joint of Nuclear Steam Turbine Rotor[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[3] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[4] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[5] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[6] LIU Zhiyong, WAN Hongxia, LI Chan, DU Cuiwei, LI Xiaogang, LIU Xiang. Comparative Study on Corrosion of X65 Pipeline Steel Welded Joint in Simulated Shallow and Deep Sea Environment[J]. 中国腐蚀与防护学报, 2014, 34(4): 321-326.
[7] CAI Chao, YANG Jianfeng, LI Jinfeng, ZENG Fengli, TAN Xing. CORROSION OF AN Al-Mg-Si ALLOY UNDER MgCl2 SOLUTION DROPS THROUGH KELVIN PROBE[J]. 中国腐蚀与防护学报, 2011, 31(6): 467-472.
[8] KONG Dejun, WU Yongzhong, LONG Dan, ZHOU Zhaozheng. EFFECTS OF LASER SHOCK PROCESSING ON H2S STRESS CORROSION OF X70 PIPELINE STEEL WELDED JOINT[J]. 中国腐蚀与防护学报, 2011, 31(2): 125-129.
[9] LI Chaoxing; LI Jinfeng; BIRBILIS Nick; JIA Zhiqiang; ZHENG Ziqiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[10] LIU Ming WANG Yong LIU Guang-rui(Tianjing University; Tianjing 300072)TANG Mu-yao MENG Fan-sen(Xi'an Jiaotong University). INVESTIGATION ON WATER COOLING METHOD FOR IMPROVING STRESS CORROSION RESISTANCE OF WELDED PIPES[J]. 中国腐蚀与防护学报, 1998, 18(3): 187-192.
No Suggested Reading articles found!