Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 210-218    DOI: 10.11902/1005.4537.2017.017
Current Issue | Archive | Adv Search |
Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound
Jiulong SONG, Wenge CHEN(), Nannan LEI
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Download:  HTML  PDF(8451KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

T2 Cu and QCr0.5 Cu-alloy were passivated in chromate-free solutions with single molybdate and complex molybdate respectively. The formed passivation films were then characterized by electrochemical method, nitric acid drop test, neutral salt spray test, SEM and XRD etc., taking the passivation film prepared with conventional chromate containing solution as comparison. Results show that the addition of polyaspartic acid (PASP) and H2O2 could improve the passivation effect of molybdate, especially the addition of the both simultaneously, which promoted the formation of passive film, the decrease of dissolution of Cu-alloy, and thereby the formation of a passivation film of copper oxide-based, significantly improved the corrosion resistance of T2 Cu and QCr0.5 Cu-alloy. After salt spray test, the surface of passivation treated samples presents metallic lustrousness to certain extent, while with less corrosion pits. In particular, the free-corrosion current density for T2 Cu passivated in molybdate solution with PASP+H2O2 is only 3.10×10-6 A/cm2, which is close to that for the chromate passivation film i.e. 9.06×10-7 A/cm2.

Key words:  T2 Cu      QCr0.5 Cu-alloy      passivation      molybdate      polyaspartic acid     
Received:  04 February 2017     
Fund: Supported by Xi'an Science and Technology Project (2017080CG/RC043)

Cite this article: 

Jiulong SONG, Wenge CHEN, Nannan LEI. Passivation of T2 Cu and QCr0.5 Cu-alloy with Chromate-free Solutions of Molybdate Compound. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 210-218.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.017     OR     https://www.jcscp.org/EN/Y2018/V38/I2/210

Material Cu Zn Pb Ni Fe Sb Cr
T2 Cu 99.9 0.005 0.005 0.005 0.005 0.002 ---
QCr0.5 Bal. --- --- 0.050 0.100 --- 0.4~1.1
Table 1  Chemical compositions of T2 Cu and QCr0.5 Cu-alloy
(mass fraction / %)
Number Component Process condition
a Unchromation ---
b 25 g/L Na2MoO4 20 ℃, 3 min
c 25 g/L Na2MoO4+40 mL/L 30%H2O2 20 ℃, 3 min
d 25 g/L Na2MoO4+50 mg/L PASP 20 ℃, 3 min
e 25 g/L Na2MoO4+40 mL/L 30%H2O2+50 mg/L PASP 20 ℃, 3 min
f 80 g/L CrO3+30 g/L H2SO4+1 g/L NaCl 20 ℃, 3 min
Table 2  Passivating solution components and process conditions of T2 Cu and QCr0.5 Cu-alloy
Number Components of passivation solution Initial bubbling time / s
T2 QCr0.5
a Unchromation 6 5
b Na2MoO4 9 9
c Na2MoO4+H2O2 11 14
d Na2MoO4+PASP 13 12
e Na2MoO4+H2O2+PASP 21 19
f CrO3+H2SO4+NaCl 20 24
Table 3  Nitric acid-testing results of T2 Cu and QCr0.5 with different passivation treatments
Fig.1  Morphologies of T2 Cu and QCr0.5 Cu-alloy samples without (a1~a6) and with passivation treatments in Na2MoO4 (b1~b6), Na2MoO4+H2O2 (c1~c6), Na2MoO4+PASP (d1~d6), Na2MoO4+H2O2+PASP (e1~e6) and CrO3+H2SO4+NaCl (f1~f6) solutions after salt spray test for different time
Fig.2  Weight gain curves of T2 Cu (a) and QCr0.5 Cu-alloy (b) samples without and with passivation treatments in different solutions during salt spray tests for 100 h
Fig.3  XRD spectra of T2 Cu (a) and QCr0.5 Cu-alloy (b) samples before and after passivation treatments
Fig.4  SEM images of T2 Cu (a1~f1) and QCr0.5 Cu-alloy (a2~f2) samples without (a1, a2) and with passivation treatments in Na2MoO4 (b1, b2), Na2MoO4+H2O2 (c1, c2), Na2MoO4+PASP (d1, d2), Na2MoO4+H2O2+PASP (e1, e2) and CrO3+ H2SO4+ NaCl (f1, f2) soulutions after exposure in atmosphere for 7 d
Fig.5  SEM images of T2 Cu (a1~f1) and QCr0.5 Cu-alloy (a2~f2) samples without (a1, a2) and with passivation treatments in Na2MoO4 (b1, b2), Na2MoO4+H2O2 (c1, c2), Na2MoO4+PASP (d1, d2), Na2MoO4+H2O2+PASP (e1, e2) and CrO3+ H2SO4+NaCl (f1, f2) solutions after salt spray test and then exposure in atmosphere for 7 d
Fig.6  Electrochemical polarization curves of T2 Cu (a) and QCr0.5 Cu-alloy (b) samples with passivation treatments after immersion in 3.5%NaCl solution for 1.5 h
Passivation solution Icorr / Acm-2 Ecorr / V η / %
T2 QCr0.5 T2 QCr0.5 T2 QCr0.5
Unchromation 3.18×10-5 2.16×10-5 -0.366 -0.271 --- ---
Na2MoO4 7.83×10-6 4.61×10-6 -0.236 -0.240 75.3 78.7
Na2MoO4+H2O2 6.70×10-6 3.51×10-6 -0.235 -0.242 78.0 83.8
Na2MoO4+PASP 6.66×10-6 3.63×10-6 -0.256 -0.255 79.0 83.2
PASP+H2O2+Na2MoO4 3.10×10-6 3.23×10-6 -0.204 -0.199 90.3 85.1
CrO3+H2SO4+NaCl 9.06×10-7 1.44×10-6 -0.212 -0.207 97.1 93.3
Table 4  Fitting results of electrochemical polarization curves of T2 Cu and QCr0.5 Cu-alloy samples with various passivation treatments
[1] Ge L Z.Application of copper and its alloy in national economy[J]. Sci. Technol. Innov., 2016, (4): 28(葛丽珍. 铜及铜合金加工材料在国民经济中的应用[J]. 科技与创新, 2016, (4): 28)
[2] Sui W J, Zhao W J, Zhang X, et al.Influence of TEOS content on anti-corrosion property of mercapto functional organic silane based sol-gel coatings on copper alloy surface[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 52(睢文杰, 赵文杰, 张星等. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36: 52)
[3] Chen J, Zheng Q F, Wen J G.Gray correlation analyses of influence factors on atmospheric corrosion of copper and copper alloys[J]. Corros. Prot., 2010, 31: 917(陈杰, 郑弃非, 温军国. 铜及铜合金大气腐蚀影响因素的灰色关联分析[J]. 腐蚀与防护, 2010, 31: 917)
[4] Zhao S M, Hao J J, Bi X.Study on the chromium-free passivation solution for copper and copper alloys[J]. Plat. Finish., 2016, 38(9): 13(赵思萌, 郝建军, 毕祥. 铜及其合金无铬钝化液的研究[J]. 电镀与精饰, 2016, 38(9): 13)
[5] Chu J S.Advances in research on chromate- free passivation for zinc coating[J]. Technol. Innov. Appl., 2016, (6): 51(储俊生. 对镀锌层无铬钝化技术的研究进展探讨[J]. 科技创新与应用, 2016, (6): 51)
[6] Zhang M L, Zhao J M.Research progress of synergistic inhibition effect and mechanism[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 1(张漫路, 赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36: 1)
[7] Zhang Z G, Guo D, Zhou H F, et al.Research progress of molybdate-based inhibitors used for nonferrous metals[J]. Mater. Prot., 2015, 48(4): 40(张志刚, 郭帝, 周华锋等. 钼酸盐应用于有色金属缓蚀的研究进展[J]. 材料保护, 2015, 48(4): 40)
[8] Xiao J, Zhang J D.Study on corrosion inhibition performance of molybdate corrosion inhibitor for copper[J]. Silicon Valley, 2011,(23): 105(肖靖, 张剑德. 钼酸盐复配缓蚀剂对铜的缓蚀性能研究[J]. 硅谷, 2011, (23): 105)
[9] Wang X, Zhang C L.Corrosion inhibition of sodium molybdate and triethanolamine for copper[J]. Corros. Sci. Prot. Technol., 2004, 16: 44(王昕, 张春丽. 钼酸钠和三乙醇胺对铜的缓蚀作用[J]. 腐蚀科学与防护技术, 2004, 16: 44)
[10] Zhang S C, Shi W Y, Bai Z M.Chromium-free passivation treatment for copper alloy[J]. Corros. Prot., 2005, 26: 96(张世超, 石伟玉, 白致铭. 铜合金无铬钝化的研究[J]. 腐蚀与防护, 2005, 26: 96)
[11] Hu Y X, Chen Z L, Liu X, et al.Study on surface treatment of metal copper[J]. J. Beijing Inst. Petro-Chem., 2000, 8(2): 13(胡应喜, 陈志玲, 刘霞等. 金属铜表面处理研究[J]. 北京石油化工学院学报, 2000, 8(2): 13)
[12] Fu R, Wang S, Zhou R T.Progress on research of passivated galvanized[J]. Jiangxi Chem. Ind., 2014, (4): 34(付锐, 汪晟, 周仁韬. 镀锌钝化研究进展概述[J]. 江西化工, 2014, (4): 34)
[13] Ding Y T, Lu Z H, Hu Y, et al.Oxidation behavior of pure copper and its influencing factors[J]. J. Lanzhou Univ. Technol., 2010, 36(2): 1(丁雨田, 卢振华, 胡勇等. 纯铜的氧化行为及影响因素[J]. 兰州理工大学学报, 2010, 36(2): 1)
[14] Yu F, Liu G M, Yang L.Study of molybdate-tannic acid passivation on galvanised steel[J]. J. Nanchang Hangkong Univ.(Nat. Sci.), 2012, 26(2): 45(于斐, 刘光明, 杨柳. 热镀锌钢板钼酸盐-单宁酸钝化研究[J]. 南昌航空大学学报 (自然科学版), 2012, 26(2): 45)
[15] Yue H W, Wang S L, Liu Y L, et al.Effect of H2O2 on the CMP of the copper pattern wafer in the alkaline slurry[J]. Micronano. Technol., 2012, 49: 553(岳红维, 王胜利, 刘玉岭等. 碱性抛光液中H2O2对铜布线CMP的影响[J]. 微纳电子技术, 2012, 49: 553)
[16] Yang J, Jiang K, Zhang D Q.No-chromium passive treatment for brass surface[J]. Corros. Prot., 2001, 22: 193(杨健, 蒋凯, 张大全. 黄铜表面的非铬钝化处理研究[J]. 腐蚀与防护, 2001, 22: 193)
[17] Xu Q J, Shan Z H, Zhu L J, et al, Photoelectrochemical study on the complex of poly-aspartate and tungstate as inhibitors against brass corrosion[J]. Acta Chim. Sin., 2009, 67: 618(徐群杰, 单贞华, 朱律均等. 聚天冬氨酸与钨酸钠复配对黄铜缓蚀作用的光电化学研究[J]. 化学学报, 2009, 67: 618)
[18] Zha F L, Feng B, He T X.Corrosion behavior of copper grounding materials buried in soil at different depths[J]. Mater. Prot., 2015, 48(3): 48(查方林, 冯兵, 何铁祥. 不同埋地深度下铜质接地网材料的腐蚀特性[J]. 材料保护, 2015, 48(3): 48)
[19] Pan Y, Zhang S P, Zhou J L, et al.Research progress of pitting corrosion initiation of metal materials[J]. Equip. Environ. Eng., 2010, 7(4): 67(潘莹, 张三平, 周建龙等. 金属材料点蚀形核过程研究进展[J]. 装备环境工程, 2010, 7(4): 67)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] BAI Pengkai, XU Ping. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[3] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[4] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[5] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
[6] Han YAN, Qing ZHAO, Nan DU, Yanqing HU, Liqiang WANG, Shuaixing WANG. Formation Process and Corrosion Resistance of Trivalent Chromium Passivation Film on Zn-plated Q235 Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 547-553.
[7] Kaifa DU,Bin WANG,Fuxing GAN,Dihua WANG. Corrosion Performance of Oxide Scales on Bronze QSn7-0.2 Anode in Molten Carbonates[J]. 中国腐蚀与防护学报, 2017, 37(5): 421-427.
[8] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[9] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[10] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[11] Chao XIANG,Jiazhen WANG,Huameng FU,En-Hou HAN,Haifeng ZHANG,Jianqiu WANG,Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[12] Yuanjin LI,Xinying LU. Influence of Mill Scale on Prepassivation of Rebar[J]. 中国腐蚀与防护学报, 2015, 35(4): 359-364.
[13] HE Jin, YAN Minsheng, YANG Lijing, Masoumeh Moradi, SONG Zhenlun, JIANG Yehua. Electrochemical Corrosion and Critical Pitting Temperature of S32750 Super Duplex Stainless Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(2): 106-112.
[14] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[15] ZHOU Xin, CHEN Ren, YANG Huaiyu, WANG Fuhui. Effect of Pentaerythritol Glycoside on Performance of Passive Film Formed on Steel Rebar in Saturated Ca(OH)2 Solution Containing 3.5%NaCl[J]. 中国腐蚀与防护学报, 2014, 34(2): 125-130.
No Suggested Reading articles found!