Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 33-38    DOI: 10.11902/1005.4537.2017.005
Orginal Article Current Issue | Archive | Adv Search |
Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment
Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN()
Institute of Flow Induced Corrosion, Zhejiang Sci-Tech University, Hangzhou 310018, China
Download:  HTML  PDF(3868KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of the pH value, impact velocity and impact angle of the corrosive medium (HCl droplet) on the dew point corrosion behavior of 10# carbon steel in a simulated HCl-H2O dew point corrosion environment of the atmospheric tower system was investigated by means of mass change measurement, scanning electron microscopy (SEM), X-ray diffraction (XRD). Results indicate that: the dew point corrosion rate of 10# carbon steel increases with the impact velocity, and decreases with the increasing pH value and impact angle of HCl droplet, while a turning point of the dew point corrosion rate exists at the impact angle of 45°. The corrosion mode of 10# carbon steel in the HCl-H2O environment is pitting corrosion, and there are many pits with different sizes and shapes on its surface, and Cl- in the solution will deepen the pits. The main composition of corrosion product on 10# carbon steel is α-FeOOH and Fe2O3.

Key words:  10# carbon steel      HCl-H2O environment      dew point corrosion      SEM      influence factor     
Received:  09 January 2017     
ZTFLH:  TQ026.5  
Fund: Supported by Coal Joint Fund from Natural Science Foundation of China and Shenhua Group Corporation Limited(U1361107), National Key R&D Plan (2017YFF0210403), Zhejiang Provincial Natural Science Foundation of China (LY17E060008) and Talent Project of Zhejiang Association for Science and Technology (2017YCGC016)

Cite this article: 

Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 33-38.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.005     OR     https://www.jcscp.org/EN/Y2018/V38/I1/33

Fig.1  Simulation device sketch of dew point corrosion (1:nitrogen cylinder; 2: glass experiment box; 3: feeding bottle; 4: siderocradle; 5: nitrogen outlet; 6: nitrogen inlet; 7: speed control valve; 8: specimen; 9: angle adjuster; 10: height adjustment; 11: waste outlet)
Fig.2  Corrosion rates of 10# carbon steel during hydrochl-oric dew-point corrosion as a function of pH value(θ=90°, impact velocity=3.01 m/s)
Fig.3  Hydrochloric dew-point corrosion rates of 10# carbon steel at various impact angles (pH=2, impact velocity=3.01 m/s)
Fig.4  Hydrochloric dew-point corrosion rates of 10# carbon steel at various impact velocities (pH=2, θ=90°)
Fig.5  Micro-morphology of corrosion product scale formedon 10# carbon steel (pH=2, θ=90°, impact velocity=3.01 m/s)
Fig.6  XRD pattern of the corrosion scale formed on 10# carbon steel (pH=2, θ=90°, impact velocity=3.01 m/s)
Fig.7  Surface micro-morphology of 10# carbon steel after corrosion (pH=2, θ=90°, impact velocity=3.01 m/s) (a) and the magnified image of the circle area in Fig.7a (b)
Fig.8  Surface morphology of 10# carbon steel after removing the corrosion scale formed under the test condition (pH=2, θ=90°, impact velocity=3.01 m/s) (a) and the magnified image of the circle area in Fig.8a (b)
[1] Dion M, Payne B, Grotewold D.Operating philosophy can reduce overhead corrosion: Boost refinery reliability by controlling potential amine recycle loops[J]. Hydrocarb. Process., 2012, 91(3): 45
[2] Saxena R C, Jayaraman A, Chauhan R K, et al.Studies on corrosion control of naphtha fractions in overhead condensing system using laboratory distillation device[J]. Fuel Process. Technol., 2010, 91: 1235
[3] Yang Y G.In situ study of hydrochloric acid dew point corrosion of carbon steel and stainless steel [D]. Harbin: Harbin Engineering University, 2013(杨延格. 碳钢及不锈钢盐酸露点腐蚀行为的原位研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[4] Huijbregts W M M, Leferink R. Latest advances in the understanding of acid dewpoint corrosion: Corrosion and stress corrosion cracking in combustion gas condensates[J]. Anti Corros. Methods Mater., 2004, 51: 173
[5] Lins V F C, Guimaraes E M. Failure of a heat exchanger generated by an excess of SO2 and H2S in the sulfur recovery unit of a petroleum refinery[J]. J. Loss Prevent. Proc. Ind., 2007, 20: 91
[6] Duan Y F, Yu F C, Cui Z Q, et al.Dew-point corrosion in crude distillation unit overhead system and prevention[J]. Corros. Prot. Petrochem. Ind., 2014, 31(5): 29(段永锋, 于凤昌, 崔中强等. 蒸馏装置塔顶系统露点腐蚀与控制[J]. 石油化工腐蚀与防护, 2014, 31(5): 29)
[7] Zhu Y D, Yang Y G, Wei D F, et al.In situ study of hydrochloric acid dew point corrosion of stainless steel[J]. Corros. Sci. Prot. Technol., 2016, 28: 9(朱义东, 杨延格, 韦德福等. 不锈钢盐酸露点腐蚀行为的原位研究[J]. 腐蚀科学与防护技术, 2016, 28: 9)
[8] Saxena R C, Jayaraman A, Chauhan R K, et al.Studies on corrosion control of naphtha fractions in overhead condensing system using laboratory distillation device[J]. Fuel Process. Technol., 2010, 91: 1235
[9] Xu S Q.Dew point corrosion and appropriate steels for the service[J]. Petrochem. Corros. Prot., 2000, 17(1): 1(许适群. 关于露点腐蚀及用钢的综述[J]. 石油化工腐蚀与防护, 2000, 17(1): 1)
[10] Gui L M.Analysis and protection measures of the paraffin chloride tank corrosion[J]. Liaoning Chem. Ind., 2007, 36: 501(贵雷鸣. 氯化石蜡储罐腐蚀原因分析及防护措施[J]. 辽宁化工, 2007, 36: 501)
[11] Cheng X Q, Sun F L, Lv S J, et al.A new steel with good low-temperature sulfuric acid dew point corrosion resistance[J]. Mater. Corros., 2010, 63: 598
[12] Li M, Chen H, Li X G, et al.Dew point corrosion cracking of low carbon steels and their weld seams in nitrate solution[J]. Corros. Sci. Prot. Technol., 2003, 15: 259(李明, 陈华, 李晓刚等. 低碳钢及焊缝硝酸盐露点腐蚀开裂研究[J]. 腐蚀科学与防护技术, 2003, 15: 259)
[13] Wu F.Analysis on corrosion behavors of the boiler for phosphorus of yellow phosphoric tall gas [D]. Kunming: Kunming University of Science and Technology, 2009(吴飞. 黄磷尾气中磷元素对锅炉材料的腐蚀行为研究 [D]. 昆明: 昆明理工大学, 2009)
[14] Gao H P, Wu F, Long J M, et al.Analysis on corrosion behaviors of the boiler for combusting with yellow phosphoric tail gas[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 51(郜华萍, 吴飞, 龙晋明等. 黄磷尾气燃气锅炉的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31: 51
[15] Guan L.The controlling research on dew point corrosion at the top system of the atmospheric tower [D]. Xi'an: Xi'an Shiyou University, 2014(关乐. 常压塔顶系统露点腐蚀控制研究 [D]. 西安: 西安石油大学, 2014)
[16] Chen H L, Li X J, Wei Y.Corrosion mechanism of carbon steel in chloride solution[J]. Corros. Prot., 2007, 28: 17(陈惠玲, 李晓娟, 魏雨. 碳钢在含氯离子环境中腐蚀机理的研究[J]. 腐蚀与防护, 2007, 28: 17)
[17] Nie X H, Li Y L, Li J K, et al.Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. J. Mater. Eng., 2010, (8): 24(聂向晖, 李云龙, 李记科等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J]. 材料工程, 2010, (8): 24)
[18] Ou G F, Ren H Y, Wang K X, et al.Erosion-corrosion behaviors of 10# carbon steel in NH4HS solution[J]. Acta Petrol. Sin.(Pet. Process. Sec.), 2014, 30: 928(偶国富, 任海燕, 王宽心等. 10#碳钢在NH4HS溶液中的冲蚀规律[J]. 石油学报 (石油加工), 2014, 30: 928)
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] LU Shuang, REN Zhengbo, XIE Jinyin, LIU Lin. Investigation of Corrosion Inhitibion Behavior of 2-aminobenzothiazole and Benzotriazole on Copper Surface[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[3] ZHAO Boru, SUN Zhi, ZHAO Jianwei, CHEN Zhidong. Self-assembly Process of Hexadecanethiol on Silver Plating Surface and Its Protectiveness[J]. 中国腐蚀与防护学报, 2020, 40(3): 281-288.
[4] Zhifeng LIU,Zhiping ZHU,Chun SHI,Zhaoxin HUANG. Preparation of Sulfuric Acid Vapor for Simulation of Sulfuric Acid Dew Point Corrosion by Inert Gas Carrying Method[J]. 中国腐蚀与防护学报, 2020, 40(1): 1-9.
[5] Wang YAO, Herong ZHOU, Kui XIAO, Pengyang LIU, Jiayong DAN, Run WU. Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[6] Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[7] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[8] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[9] Wenye LU,Dieyi CHEN,Burong CHEN,Tao TANG. Hexadecane-thiol Self-assembly Monolayers on Silver for Anti-tarnishing[J]. 中国腐蚀与防护学报, 2016, 36(2): 172-176.
[10] Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
[11] Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments[J]. 中国腐蚀与防护学报, 2016, 36(1): 39-46.
[12] Fang SONG,Youyuan CHEN,Qinpeng CHANG,Tao PENG. Corrosion Inhibition of Self-assembled Monolayer of Phytic Acid for HAl77-2 Brass[J]. 中国腐蚀与防护学报, 2015, 35(4): 317-325.
[13] ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[14] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[15] TAN Yu,LIANG Kexin,ZHANG Shenghan. Photo-electrochemical Study on Semiconductor Properties of Oxide Films Formed on 316L Stainless Steel in High Temperature Water[J]. 中国腐蚀与防护学报, 2013, 33(6): 491-495.
No Suggested Reading articles found!