Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 33-37    DOI: 10.11902/1005.4537.2013.244
Current Issue | Archive | Adv Search |
Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Alkaline Soil
ZHANG Xiuyun, SHI Zhiqiang(), WANG Yanfang, LIU Mingxing, YANG Shengsheng
Department of Materials Science and Engineering, China University of Petroleum (Huadong), Qingdao 266580, China
Download:  HTML  PDF(4554KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of X100 pipeline steel in an artificial solution which aims to simulate the alkaline soil medium at Korla area of Xinjiang were investigated by weight-loss, electrochemical measurement, scanning electron microscopy (SEM) with energy dispersive spectrometer (EDS) and X-ray diffractomater (XRD). Results show that the corrosion behavior of X100 pipeline steel in the simulated solution is a typical active dissolution corrosion. The corrosion tendency gradually increases with time. The average corrosion rate and the instantaneous corrosion rate all increase first, then decrease and increase again finally. The corrosion products exhibit a three layered structure composed of a surface layer of loosened brown red γ-FeOOH, a middle layer of black loosened Fe3O4 and FeS and an inner layer of dense black Fe3O4 and FeS. It is also found that Cl- plays an important role in X100 steel corrosion, and a small amount of SO42- is also involved in the reaction which has certain influence on the corrosion.

Key words:  X100 pipeline steel      Korla soil      alkaline simulation solution     
ZTFLH:  TG172.4  

Cite this article: 

ZHANG Xiuyun, SHI Zhiqiang, WANG Yanfang, LIU Mingxing, YANG Shengsheng. Corrosion Behavior of X100 Pipeline Steel in Simulated Solution of Alkaline Soil. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 33-37.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.244     OR     https://www.jcscp.org/EN/Y2015/V35/I1/33

Fig.1  Microstructure of X100 pipeline steel
Fig.2  Macroscopic morphologies of X100 pipeline steel exposed in simulated solution of Korla soil for 30 d (a) and 90 d (b)
Fig.3  Microscopic morphologies of X100 pipeline steel exposed in simulated solution of Korla soil for 1 d (a), 30 d (b), 60 d (c) and 90 d (d)
Fig.4  Average corrosion rates of X100 pipeline steel after exposure in simulated solution of Korla soil for different time
Fig.5  Polarization curves of X100 steel after exposure in simulated solution of Korla soil for 1, 30, 60 and 90 d
Time / d icorr / μАcm2 Ecorr / mV
1 35.7 -646
30 36.2 -743
60 16.9 -768
90 21.8 -809
Table 1  Fitted results of polarization curves for X100 steel exposed in simulated solution of Korla soil for different time
Fig.6  XRD pattern of the corrosion products of X100 pipeline steel exposed in simulated solution of Korla soil
Fig.7  EDS result for X100 pipeline steel exposed in simulated solution of Korla soil for 60 d
Element Atomic fraction / % Mass fraction / %
C 7.47 3.36
O 64.2 38.42
S 0.30 0.36
Ti 2.35 4.21
Fe 25.69 53.66
Table 2  EDS element analysis for X100 pipeline steel exposed in simulated solution of Korla soil for 60 d
[1] Ismail A I M, El-Shamy A M. Engineering behavior of soil materials on the corrosion of mild steel[J]. Appl. Clay Sci., 2009, 42: 356
[2] Zhang B H,Cong W B,Yang P. Metal Electrochemical Corrosion and Protection[M]. Beijing: Chemical Industry Press, 2005
(张宝宏,丛文博,杨萍. 金属电化学腐蚀与防护[M]. 北京: 化学工业出版社, 2005: 8)
[3] Cao C N. Natural Environmental Corrosion of China Materials[M]. Beijing: Chemical Industry Press, 2005
(曹楚南. 中国材料的自然环境腐蚀[M]. 北京: 化学工业出版社, 2005: 373)
[4] Li X G,Du C W,Dong C F. Corrosion Behavior and Experimental Study of X70 Pipeline Steel[M]. Beijing: Science Press, 2006
(李晓刚,杜翠薇,董超芳. X70钢的腐蚀行为与实验研究[M]. 北京: 科学出版社, 2006)
[5] Zhang C, Cheng Y F. Synergistic effects of hydrogen and stress on corrosion of X100 pipeline steel in a near-neutral pH solution[J]. Mater. Eng. Perform., 2010, 19: 1284
[6] Li C, Du C W, Liu Z Y, et al. Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated aci-dic soil [J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 377
(李超, 杜翠薇, 刘志勇等. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31(5): 377)
[7] Al-mansour M, Alfantazi A M, El-boujdaini M. Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Design, 2009, 30(10): 4088
[8] Li C, Du C W, Liu Z Y, et al. Stress corrosion behavior of X100 pipeline steel in simulated solution of acid soil[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 327
(李超, 杜翠薇, 刘智勇等. X100管线钢在酸性土壤模拟溶液中的应力腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 327)
[9] Luo H W, Dong H. Development of X80~X120 high grade linepipe steels and their applications[J]. China Metall., 2006, 16(4): 9
(罗海文, 董瀚. 高级别管线钢X80~X120的研发与应用[J]. 中国冶金, 2006, 16(4): 9)
[10] Yoo J Y, Ahn S S, Seo D H, et al. New development of high grade X80 to X120 pipeline steels[J]. Mater. Manuf. Process., 2011, 26(1): 154
[11] Liang P, Du C W, Li X G. Simulating and accelerating properties of Ku'erle soil simulated solution[J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 97
(梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究[J]. 中国腐蚀与防护学报, 2011, 31(2): 97)
[12] Cui Z Y, Li X G, Xiao K, et al. Atmospheric corrosion of field-expos AZ31 magnesium in a tropical marine environment[J]. Corros. Sci., 2013, 76: 243
[13] Liang P, Li X G, Du C W, et al. Effect of dissolved oxygen on corrosion resistance of X80 pipeline steel in NS4 solution[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 20
(梁平, 李晓刚, 杜翠薇等. 溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 20)
[1] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[2] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[3] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[4] ZHAO Yang, LIANG Ping, SHI Yanhua, ZHANG Yunxia. Influence of Environmental Factors on Property of Passive Film Formed on X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2015, 35(2): 113-121.
[5] WANG Bin, ZHOU Cui, LI Liangjun, HU Hongmei, ZHU Jiaxiang. Resistance to Hydrogen Induced Corrosion Cracking of Weld Joint of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.
[6] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[7] LI Chao, DU Cuiwei, LIU Zhiyong, LI Xiaogang. CHARACTERISTICS OF ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY FOR X100 PIPELINE STEEL IN WATER-SATURATED ACIDIC SOIL[J]. 中国腐蚀与防护学报, 2011, 31(5): 377-380.
[8] JIA Yizheng, WANG Jianqiu, HAN En-Hou, KE Wei. STRESS CORROSION CRACKING BEHAVIOR OF X100 PIPELINE STEEL IN NS4 SOLUTION UNDER CONSTANT LOADING TEST[J]. 中国腐蚀与防护学报, 2011, 31(3): 184-189.
No Suggested Reading articles found!