Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (1): 27-32    DOI: 10.11902/1005.4537.2013.251
Current Issue | Archive | Adv Search |
Corrosion Behavior of Galvanized Q235 Steel for Grounding in Acid Soils
ZHENG Mincong1, LI Jianhua1, NIE Xinhui1, LI Bowen2(), TAI Chuang2
1. State Grid Anhui Electric Power Research Institute, Hefei 230601, China
2. Environmental Corrosion Research Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrochemical behavior of galvanized Q235 steel for grounding in acidified soils with different pH value was investigated utilizing electrochemical impedance spectrum (EIS) and potentiodynamic polarization tests. Results showed that the corrosion behavior of galvanized Q235 steel in acid soils presents an adsorption of intermediate corrosion products in the early stage, and a low frequency inductive loop then induced in Nyquist plot. With the formation of corrosion products on the surface of the steel, the inductive loop disappeared, the low frequency capacitive arc enlarged gradually. The corrosion process is mainly controlled by the cathodic process. The corrosion rate of the galvanized Q235 steel decreased with the increasing pH of the acidified solution, it also increased and then decreased with the increasing time.

Key words:  galvanized steel      acidic soil      corrosion      EIS     
ZTFLH:  TG174  

Cite this article: 

ZHENG Mincong, LI Jianhua, NIE Xinhui, LI Bowen, TAI Chuang. Corrosion Behavior of Galvanized Q235 Steel for Grounding in Acid Soils. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 27-32.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.251     OR     https://www.jcscp.org/EN/Y2015/V35/I1/27

Fig.1  Nyquist (a) and Bode (b) splots of galvanized steel in the soil acidified by pH=2.2 acidification solution
Fig.2  Nyquist (a) and Bode (b) plots of galvanized steel in the soil acidified by pH=3.6 acidification solution
Fig.3  Nyquist (a) and Bode (b) plots of galvanized steel in the soil acidified by pH=4.0 acidification solution
Fig.4  Equivalent circuits used to fit experimental impedance data for galvanized steel immersed in acidified soils: (a) at the initial stage, (b) after long time
pH Time / d Rs / Ω Rf / Ω Q / F H z 1 - n 1 n1 Rct / Ω Q / F H z 1 - n 2 n2 L / H
2.2 0.125 260.10 522.30 2.41×10-9 1.057 7363 9.91×10-9 0.589 10.68
0.33 268.90 488.50 2.89×10-9 1.075 4673 1.05×10-8 0.588 4.79
1 87.46 686.70 2.28×10-9 1.020 4157 1.10×10-8 0.588 ---
2 90.26 606.40 2.01×10-9 1.009 3378 1.09×10-8 0.581 ---
4 68.61 589.50 1.93×10-9 1.012 3356 1.00×10-8 0.577 ---
7 49.63 659.40 1.38×10-9 0.981 4353 1.17×10-8 0.594 ---
13 73.23 587.50 1.61×10-9 0.986 6386 2.38×10-8 0.621 ---
20 86.06 368.40 2.25×10-9 0.992 9600 5.02×10-8 0.641 ---
3.6 0.125 13.29 1398 2.46×10-10 0.762 13592 4.26×10-8 0.640 10.53
0.33 209.60 1018 1.26×10-9 0.808 9774 3.95×10-8 0.631 5.13
1 201.40 864.30 2.04×10-9 0.842 8028 3.15×10-8 0.621 ---
2 84.47 834.40 1.71×10-9 0.995 6815 2.50×10-8 0.607 ---
7 153.80 677.30 2.04×10-9 0.940 9200 2.43×10-8 0.603 ---
13 100.70 636.20 2.28×10-9 0.990 10698 2.10×10-8 0.594 ---
20 44.35 578.60 1.25×10-9 0.969 12839 2.60×10-8 0.598 ---
4.0 1 4.83×10-5 1501 8.59×10-10 0.949 11292 7.35×10-9 0.577 ---
2 1.01×10-5 1548 8.30×10-10 0.952 10176 5.82×10-9 0.569 ---
4 1.67×10-5 1404 7.86×10-10 0.923 8500 6.17×10-9 0.563 ---
7 1.54×10-6 1363 6.95×10-10 0.909 8148 6.02×10-9 0.556 ---
13 9.68×10-7 1069 6.36×10-10 0.891 11398 6.27×10-9 0.552 ---
20 29.73 622.70 8.36×10-10 0.921 15313 3.43×10-9 0.525 ---
Table1  Electrochemical parameters of galvanized steel in acidified soils
Fig.5  Curves of Rp vs experimental time
Fig.6  Polarization curves of galvanized steel in the soils acidified by pH=2.2 (a), pH=3.6 (b) and pH=4.0 (c) solutions
pH Time / d Ecorr / V Icorr / Acm-2 βa / mV βc / mV
2.2 1 -1.03 9.62×10-6 144.98 194.83
2 -1.04 9.92×10-6 176.34 236.78
4 -1.05 9.55×10-6 185.83 216.02
7 -1.05 7.16×10-6 197.35 197.36
13 -1.04 3.23×10-6 111.05 135.37
20 -1.03 1.77×10-6 84.52 149.06
3.6 1 -1.00 6.14×10-6 187.35 391.48
2 -1.04 9.92×10-6 220.88 456.92
7 -1.00 2.70×10-6 116.97 145.03
13 -0.99 3.31×10-6 150.67 201.67
20 -0.98 1.54×10-6 76.73 116.90
4.0 1 -0.10 5.01×10-6 231.79 406.42
2 -1.00 4.30×10-6 232.09 311.20
4 -0.96 6.16×10-6 259.53 383.20
7 -0.95 6.16×10-6 255.35 356.25
13 -0.97 4.07×10-6 177.58 307.02
20 -1.00 1.93×10-6 104.93 206.97
Table 2  Tafel fitting results of polarization curves
[1] Yu J F, Chen X H, Li S F, et al. Study on corrosion behavior of Q235 steel in soil of Hubei substations[J]. Corros. Res., 2011, 25(10): 39
(余建飞, 陈心河, 李善风等. Q235钢在湖北变电站土壤中的腐蚀行为研究[J]. 腐蚀研究, 2011, 25(10): 39)
[2] Zhang G Y, Xu M, Lin Y Q, et al. A preliminary study of common carbon steel corrosion behavior in acidic soil[J]. Soils, 2009, 41(3): 500
(章钢娅, 许敏, 林云青等. 常用碳钢在酸性土壤中腐蚀行为的初步研究[J]. 土壤, 2009, 41(3): 500)
[3] Yang D W, Wang G, Chen K H, et al. Influence of moisture and chloride on acidic soil corrosion of carbon steel grounding grid[J]. J. Changsha Univ. Sci. Technol.(Nat. Sci.), 2010, 7(1): 83
(杨道武, 王钢, 陈坤汉等. 水和氯离子含量对碳钢接地网在酸性土壤中腐蚀行为的影响[J]. 长沙理工大学学报 (自然科学版), 2010, 7(1): 83)
[4] Zhang S Q, Ying Y D. Corrosion characteristics of metal in acidic red soil[J]. Total Corros. Control, 1997, 11(1): 1
(张淑泉, 银耀德. 金属在酸性红壤中的腐蚀特征[J]. 全面腐蚀控制, 1997, 11(1): 1)
[5] Liao J Y, Liu J Q, Sun J R, et al. A study on corrosion behavior of carbon steel in south china acidic soil[J]. J. South China Univ. Technol., 2001, 29(4): 70
(廖景娱, 刘钧泉, 孙嘉瑞等. 碳钢在华南酸性土壤中的腐蚀行为研究[J]. 华南理工大学学报, 2001, 29(4): 70)
[6] Jin M H, Meng X L, Huang H T, et al. Corrosion mechanism of carbon steel in four types of soil[J]. J. Huazhong Univ. Sci. Technol., 2002, 30(7): 104
(金名惠, 孟厦兰, 黄辉桃等. 碳钢在我国四种土壤中腐蚀机理的研究[J]. 华中科技大学学报, 2002, 30(7): 104)
[7] Yan A J, Chen Y, Feng L J. Soil corrosion performance of several grounding net materials[J]. Corros. Sci. Prot. Technol., 2010, 22(3): 187
(闫爱军, 陈沂, 冯拉俊. 几种接地网材料在土壤中的腐蚀特性研究[J]. 腐蚀科学与防护技术, 2010, 22(3): 187)
[8] Denison A, Romanoff M. Corrosion of galvanized steel in soils[J]. J. Res. Nat. Bur. Stand., 1952, 49(5): 299
[9] Liu S, Sun H Y, Fan H J, et al. Research of galvanized steel corrosion behavior[J]. J. Mater. Prot., 2012, 45(12): 42
(刘栓, 孙虎元, 范汇吉等. 镀锌钢腐蚀行为的研究进展[J]. 材料保护, 2012, 45(12): 42)
[10] Zhou P P, Wang S, Li Z Z, et al. Review of corrosion resistant metals for grounding[J]. Elec. Power Constr., 2010, 31(8): 50
(周佩朋, 王森, 李志忠等. 耐蚀性金属接地材料研究综述[J]. 电力建设, 2010, 31(8): 50)
[11] NY/T 1377-2007, Determination of pH in soil[S]
(NY/T 1377-2007, 土壤pH值的测定[S])
[12] Cachet C, Ganne F, Maurin G, et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part I: Bulk zinc[J]. Electrochem. Acta, 2001, 47: 509
[13] Sun H Y, Liu S, Sun L J. A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5wt% NaCl[J]. Int. J. Electrochem. Sci., 2013, 8: 3494
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] WANG Kuntai, CHEN Fu, LI Huan, LUO Mina, HE Jie, LIAO Zihan. Corrosion Behavior of L245 Pipeline Steel in Shale Gas Fracturing Produced Water Containing Iron Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[4] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[5] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[6] GE Pengli, ZENG Wenguang, XIAO Wenwen, GAO Duolong, ZHANG Jiangjiang, LI Fang. Effect of Applied Stress and Medium Flow on Corrosion Behavior of Carbon Steel in H2S/CO2 Coexisting Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[7] HE Jing, YANG Chuntian, LI Zhong. Research Progress of Microbiologically Influenced Corrosion and Protection in Building Industry[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] ZHANG Yifan, YUAN Xiaoguang, HUANG Hongjun, ZUO Xiaojiao, CHENG Yulin. Corrosion Behavior of Cu-Al Laminated Board in Neutral Salt Fog Environment[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[9] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[10] CAO Jingyi, YANG Yange, FANG Zhigang, SHOU Haiming, LI Liang, FENG Yafei, WANG Xingqi, CHU Guangzhe, ZHAO Yi. Failure Behavior of Fresh Water Tank Coating in Different Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[11] LUAN Hao, MENG Fandi, LIU Li, CUI Yu, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Preparation and Anticorrosion Performance of M-phenylenediamine-graphene Oxide/Organic Coating[J]. 中国腐蚀与防护学报, 2021, 41(2): 161-168.
[12] CAO Jingyi, FANG Zhigang, LI Liang, FENG Yafei, WANG Xingqi, SHOU Haiming, YANG Yange, CHU Guangzhe, YIN Wenchang. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Fresh Water and Salt Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[13] CAO Jingyi, FANG Zhigang, FENG Yafei, LI Liang, YANG Yange, SHOU Haiming, WANG Xingqi, ZANG Bolin. Corrosion Behavior of Domestic Galvanized Steel in Different Water Environment: Reverse Osmosis Water and Conditioned Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[14] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[15] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
No Suggested Reading articles found!