Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 550-557    DOI: 10.11902/1005.4537.2013.183
Current Issue | Archive | Adv Search |
Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater
FAN Fengqin1, SONG Jiwen2, LI Chengjie1, DU Min1()
1. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
2. CNOOC Energy Technology & Services Limited Beijing Branch Information Technology Development Center, Beijing 100027, China
Download:  HTML  PDF(3704KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of cathodic polarization experiments for DH36 steel has been performed with seawater flow in a range of flow velocities: 0.20, 0.40, 0.60, 0.80, 1.00, 1.20, 1.40 and 2.00 m/s in a pipe flow circulating seawater device. For each flow velocity, at least three different polarization current densities were chosen to perform galvanostatic cathodic polarization for 7 d. The results showed that the current density demand for an adequate cathodic protection (CP) increased with the flow velocity; the potential could be also polarized to achieve -800 mV vs the silver/silver chloride (seawater) reference electrode (Ag/AgCl [sw]) when the velocity was up to 1.00 m/s; however when the velocity was above 1.20 m/s, erosion-corrosion probably could occur even the polarization potential has achieved the protective potential; the calcareous deposits formed on the steel surface were most single magnesium-rich layers. Exceptionally, calcium-rich deposits could form on top of the magnesium-rich layer only when a very high current density was applied.

Key words:  cathodic protection      flow velocity      protection current density      calcareous deposit      galvanostatic polarization     
ZTFLH:  TG174.3  

Cite this article: 

FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 550-557.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.183     OR     https://www.jcscp.org/EN/Y2014/V34/I6/550

Fig.1  Schematic diagram of the experimental setup
Fig.2  Schematic diagram of the experimental cell: (a) lateral view, (b) cross section profile
Fig.3  Evaluations of potential at different current densities in sea water with the flow rate of 0.20 m/s (a), 0.40 m/s (b), 0.60 m/s (c), 0.80 m/s (d), 1.00 m/s (e), 1.20 m/s (f), 1.40 m/s (g) and 2.00 m/s (h)
Current density
mA/m2
Potential / mV
0.20 m/s 0.40 m/s 0.60 m/s 0.80 m/s
300 -718 -703 --- ---
400 -879 -794 -777 -735
600 -1000 -976 -909 -942
800 -1120 -1160 -1004 -976
1000 --- --- -1025 -1008
Table 1  Final potentials after polarization for 7 d under different conditions of sea water flow rate and current density
Fig.4  Macroscopic photographs of the cathode surface with different velocities and current densities after polarization for 7 d under the different conditions of sea water flow rate and current density: (a1, a2, a3) 0.20 m/s; 300, 400, 600 mA/m2; (b1, b2, b3) 0.80 m/s; 400, 600, 800 mA/m2; (c1, c2, c3) 1.00 m/s; 800, 1000, 1200 mA/m2; (d1, d2, d3) 1.20 m/s; 800, 1000, 1200 mA/m2; (e1, e2, e3) 1.40 m/s; 1000, 1200, 1600 mA/m2; (f1, f2, f3) 2.00 m/s; 1000, 1200, 1600 mA/m2; respectively
Fig.5  SEM photographs of the calcareous deposit formed at the sea water flow rate of 0.20 m/s and different current densities: (a) 300 mA/m2, (b) 400 mA/m2, (c) 600 mA/m2, (d) 800 mA/m2
Fig.6  EDX analysis of the deposit layer formed at the current density of 800 mA/m2: (a) inner layer, (b) outer layer
Current density mA/m2 C O Mg Ca Fe
400 19.49 34.37 9.14 0.06 37.64
600 11.45 51.25 17.49 0.09 19.73
800 (inner layer) 9.87 66.65 21.66 0.72 1.10
800 (outer layer) 21.04 66.54 0.47 11.96 0.00
Table 2  Contents of main elements in calcareous deposit formed at different current densities and 0.20 m/s flow rate
[1] Fischer K P, Espelid B, Schei B. A review of CP current demand and anode performance for deep water [A]. Corrosion/01 [C]. Houston: NACE, 2001: 01013
[2] Tawns A, Oakley R. Cathodic protection at a simulated depth of 2500 m [A]. Corrosion/00 [C]. Houston: NACE, 2000: 134
[3] Fischer K P. Deep water: considerations of the cathodic protection design basis [A]. OTC/99 [C]. Houston, 1999: 11057
[4] Li C J, Du M. Research and development of cathodic protection for steel materials in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 10-15
(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-15)
[5] Hack H P, Guanti R J. Effect of high flow on calcareous deposits and cathodic protection current density [A]. Corrosion/88 [C]. Houston: NACE, 1988: 38
[6] Fischer K P, Finnegan J E. Calcareous Deposits: Calcium and Magnesium Ion concentration [A]. Corrosion/89 [C]. Houston: NACE, 1989: 581
[7] Hugus D, Hartt W H. Effect of velocity on current density for cathodically polarized steel in seawater [A]. Corrosion/98 [C]. San Diego: NACE, 1998: 726
[8] Lin Y Z. The development of erosion corrosion research under flow conditions[J]. Total Corros. Control, 1996, 10(4): 1-3
(林玉珍. 流动条件下磨损腐蚀的研究进展[J]. 全面腐蚀控制,1996, 10(4): 1-3)
[9] Zheng F Y, Wen G M, Fang B F, et al. The effect of cathodic polarization mode on the formation of calcareous deposit[J]. Corros. Prot., 1995, 15(6): 252-256
(郑辅养, 温国谋, 方炳福等. 阴极极化模式对钙质沉积层形成的影响[J]. 腐蚀与防护, 1995, 15(6): 252-256)
[10] Yong X Y, Xu R F, Li H W, et al. The electrochemical behavior of carbon steel electrode in flowing 3.5% NaCl solution[J]. Corros. Sci. Prot. Technol., 1998, 10(2): 87-92
(雍兴跃, 徐瑞芬, 李焕文等. 碳钢电极在流动3.5%氯化钠溶液中的电化学行为[J]. 腐蚀科学与防护技术, 1998, 10(2): 87-92)
[11] Tang X, Wang J, Li Y. Effect of flow velocity of seawater on corrosion rate for A3 steel[J]. Marine Sci., 2005, 29(7): 26-29
(唐晓, 王佳, 李艳. 海水流动对A3钢腐蚀速度的影响[J]. 海洋科学, 2005, 29(7): 26-29)
[12] Zhu Y X, Zhu X C, Ge Y, et al. Study on corrosion behavior of steel in flowing freshwater[J]. Hydro-Sci. Eng. 2002, 23(2): 7-11
(朱雅仙, 朱锡昶, 葛燕等. 流动淡水中钢的腐蚀行为研究[J]. 水利水运工程学报, 2002, 23(2): 7-11)
[13] Lin Z N, Ma H T, Wang L, et al. The electrochemical corrosion behavior of iron in flowing seawater[J]. Mater. Prot., 2009, 42(7): 14-16
(林中楠, 马海涛, 王来等. 纯铁在流动海水中的电化学腐蚀行为[J]. 材料保护, 2009, 42(7): 14-16)
[14] Hartt W H, Lin N K. An evaluation of calcareous deposits as effected by sea water movements [A]. 6th ASME International Conference on Offshore Mechanics & Arctic Engineering Int. Sym. Proc [C]. Houston, 1987, 3: 425-430
[15] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater[J]. Period. Ocean Univ. China, 2011, 41(7/8): 149-153
(李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响[J]. 中国海洋大学学报, 2011, 41(7/8): 149-153)
[16] Thomason W H. Cathodic protection of steel structures in deep water: A review [A]. OTC/91 [C]. Houston, 1999: 6588
[1] LI Chengyuan, CHEN Xu, HE Chuan, LI Hongjin, PAN Xin. Alternating Current Induced Corrosion of Buried Metal Pipeline: A Review[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[2] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[3] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[4] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] Ping QIU, Lianjie YANG, Yu SONG, Hongfei YANG. Influence of DMF Modified TiO2 Film on the Photogenerated Cathodic Protection Behavior[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[7] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[8] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] Xiaolin WANG, Maocheng YAN, Yun SHU, Cheng SUN, Wei KE. AC Interference Corrosion of Pipeline Steel Beneath Delaminated Coating with Holiday[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[11] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[12] Jiangwei WANG,Jie ZHANG,Shougang CHEN,Jizhou DUAN,Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
[13] Shuang YANG,Nan TANG,Maocheng YAN,Kangwen ZHAO,Cheng SUN,Jin XU,Changkun YU. Effect of Temperature on Corrosion Behavior of X80 Pipeline Steel in Acidic Soil[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[14] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[15] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
No Suggested Reading articles found!