Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (3): 241-244    DOI:
Current Issue | Archive | Adv Search |
Effects of Additions of La(CH3COO)3 and NaF on Electrochemical Behavior of AZ31 Alloys in
Mg(ClO4)2 Solution
XIONG Yuanyuan1, ZHANG Ya1, HU Shaofeng2, CHEN Qiurong1,2, XIE Youtao3
1. Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, China;
2. Jiaxing Asia Magnesium Technology Co., Ltd., Chinese Academy of Sciences (CAS), Jiaxing 314051, China
3. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
Download:  PDF(972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstrat: The electrochemical behavior of AZ31 alloy in Mg(ClO4)2 solution with different additives was investigated by polarization curve, electrochemical impedance, constant current discharge and immersion corrosion tests. The results showed that the addition of NaF makes the open circuit potential and activation potential more negative, decreases the corrosion current in the polarization curve and corrosion rate in immersion test, increases the discharge efficiency, and especially shortens discharge hysteresis time. In contrast, the addition of La(CH3COO)3 increases the discharge efficiency, but has no beneficial effect on the discharge hysteresis and corrosion resistance of the alloy.
Key words:  AZ31 magnesium alloy      additive      electrochemical behavior      discharge hysteresis     
ZTFLH:  O646  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

XIONG Yuanyuan,ZHANG Ya,HU Shaofeng,CHEN Qiurong,,XIE Youtao. Effects of Additions of La(CH3COO)3 and NaF on Electrochemical Behavior of AZ31 Alloys in
Mg(ClO4)2 Solution. Journal of Chinese Society for Corrosion and protection, 2013, 33(3): 241-244.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I3/241

[1] Hou J C. Current status of high potential magnesium sacrificial anodes [J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 81-85
(侯军才, 张秋美. 高电位镁牺牲阳极研究进展 [J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85)
[2] Kumar G, Subramanyan V, Muniyandi N. Conductivity of low-temperature electrolytes for magnesium batteries [J]. J. Power Sources, 1992, 39(2): 155-161
[3] Chen C G, Si Y J, Yu D M, et al. Electrochemical behavior of AZ31 magnesium alloy in MgSO4 solution [J]. Chin. J. Nonferrous Met., 2006, 16(5): 781-785
(陈昌国, 司玉军, 余丹梅等. AZ31镁合金在MgSO4溶液中的电化学行为 [J]. 中国有色金属学报, 2006, 16(5): 781-785)
[4] Song G, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl [J]. Corros. Sci., 1997, 39(5): 855-875
[5] Song G, Atrens A, Wu X, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corros. Sci., 1998, 40(10): 1981-2004
[6] Yao Y F. The resrarch on electrolyte of magnesium battery [D]. Chongqing: Chongqing University, 2009
(尧玉芬. 镁电池电解液的研究 [D]. 重庆: 重庆大学硕士论文, 2009)
[7] Fan Y, Wu G H, Gao H T, et al. Effect of La on the mechanical property and corrosion resistance of AZ91D magnesium alloy [J]. Acta Metall. Sin., 2006, 42: 35-40
(樊昱, 吴国华, 高洪涛等. La对AZ91D镁合金力学性能和腐蚀性能的影响 [J]. 金属学报, 2006, 42: 35-40)
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[3] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[4] Hongtao ZHAO,Weizhong LU,Jing LI,Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[5] Xiangnan MENG,Xu CHEN,Ming WU,Yang ZHAO,Yuwen FAN. Effect of Hydrostatic Pressure on Electrochemical Behavior of X100 Steel in NaHCO3+NaCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 219-224.
[6] CUI Xuejun, BAI Chengbo, ZHU Yibo, MIN Hongyun, WANG Rong, LIN Xiuzhou. Effect of Additives Mn(NO3)2 and/or Na2MoO4 on Micro-morphology and Corrosion Performance of Phosphate Coating on AZ31B Magnesium Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[7] ZHOU Guohua,. Electrochemical Corrosion of MWCNTs/AZ31 Composite[J]. 中国腐蚀与防护学报, 2013, 33(5): 430-434.
[8] YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[9] LONG Yingchun, LI Wenfang, ZHANG Guoge, YU Fei. INFLUENCE OF ADDITIVE ON PREPARATION OF BLACK CERAMIC COATING ON ALUMINUM ALLOY BY MICRO-ARC OXIDATION METHOD[J]. 中国腐蚀与防护学报, 2012, 32(5): 388-392.
[10] DU Nan, SHU Weifa, WANG Chunxia, WANG Shuaixing, CHEN Qinglong. FUNCTION OF A COMBINATORIAL ADDITIVE ON ALKALINE NON-CYANIDE ZINC PLATING[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
[11] SHEN Xiaoni, ZHAO Dongmei, REN Fengzhang, TIAN Baohong. INFLUENCES OF ADDITIVES ON ELECTROLESS THICK COPPER PLATING BASED ON THPED SYSTEM[J]. 中国腐蚀与防护学报, 2011, 31(5): 362-366.
[12] ;. ELECTROCHEMICAL BEHAVIOR OF THESIMULATED Al2Zn SEGREGATION IN 3%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(2): 93-96 .
[13] Qilong Guo; Zhijun Gu. ELECTROCHEMICAL BEHAVIOR CARBON STEEL IN SEAMUD[J]. 中国腐蚀与防护学报, 1999, 19(5): 315-318 .
[14] WANG Sheng-xian LIN Wei-wei (Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027)CENG Sao-an ZHANG Jian-qing (Department of Chemisty; Zhejiang University; Hangzhou 310027). CORROSION PREVENTION OF REINFORCING STEEL BY ACRYLIC LATEX[J]. 中国腐蚀与防护学报, 1998, 18(3): 198-202.
No Suggested Reading articles found!