Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (4): 295-299    DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE
LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei
School of Materials Science and Engineering,Central South University, Changsha 410083
Download:  PDF(2761KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Modern testing techniques such as TEM, SEM, EDAX, Tafel curves, E-T curves and hydrogen collection test have been applied to analyze the effect of rolling temperature on the microstructure, electrochemical and anti-corrosion properties of Al-Mg-Sn-Bi-Ga-In alloy anode in alkaline solution (80℃, Na2SnO3+5 mol/L NaOH). The results show that when controlling the pass deformation at 40\%, with the increase of rolling temperature, the microstructure of Al alloy anode undergoes a process from disordered dislocations cell structure, subgrain structure to dynamic recrystallized structure. When the rolling temperature is 420℃, the Al alloy anode has the most negative electrode potential of about -1.48 V(vs•Hg/HgO) and the lowest hydrogen evolution rate of 0.1716 mL•cm-2•min-1 due to the uniform distribution of active elements and decrease of segregation phases in alloy. The optimum comprehensive performance of Al alloy anode has been obtained.

Key words:  rolling temperature      Al alloy anode      microstructure      electrochemical property      anti-corrosion property     
Received:  23 February 2009     
ZTFLH: 

TM911.41

 
Corresponding Authors:  zhiwei M AO     E-mail:  cw04zhangyong@126.com

Cite this article: 

LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE. J Chin Soc Corr Pro, 2010, 30(4): 295-299.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I4/295

[1] Wang Z W, Li Y X, Li Q F, et al. Development and application of aluminum battery anode materials [J]. Nonferrous Met., 2002, 54(1): 19-22
    (王兆文, 李延祥, 李庆峰等. 铝电池阳极材料的开发与应用 [J]. 有色金属, 2002, 54(1): 19-22)
[2] Li Q, Hjuler H A, Berg R W, et al.Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts [J]. Electrochem. Soc.,1990, 137: 75
[3] Eishaye H A, Abd E I, Wahab F M. Effect of gallingions on the electrochemical behaviour of Al, AI-Sn, AL-Zn and AL-Zn-Sn alloys in chloride solutions [J]. Corros. Sci., 2001, 43: 643-654
[4] Gurrapp A I. The surface free energy and anode efficiency of aluminum alloys [J]. Corros. Prev. Control, 1993, 40(4): 111-114
[5] Qi H F, Liang G C, Li G L, et al. Effects of homogenization treatment on aluminum alloy anode activation properties [J]. Mater.Eng., 2005, (10): 27-30
    (祁洪飞, 梁广川, 李国禄等. 均匀化退火对铝合金阳极活化性能的影响 [J]. 材料工程, 2005, (10): 27-30)
[6] Long P, Li Q F. Effect of solution treatment on Al-Zn-In-Si-Sn anode electrochemical performance analysis [J].Environ. Eng. Equip., 2005, 2(2), 12-16
    (龙萍,李庆芬. 固溶处理对Al-Zn-In-Si-Sn阳极电化学性能的影响分析 [J]. 装备环境工程, 2005, 2(2), 12-16)
[7] Zhang L S, Wang S Y, Wang W, et al. Effect of heat treatment on aluminum alloy electrode performance [J]. Power Technol.Design, 2006, 30(12), 1000-1002
    (张林森, 王双元, 王为等. 热处理对铝合金电极性能的影响 [J]. 电源技术研究与设计, 2006, 30(12), 1000-1002)
[8] Wei B M. Theory and Application of Metal Corrosion [M]. Beijing: Chemical Industry Press, 1984
    (魏宝明. 金属腐蚀理论及应用 [M]. 北京: 化学工业出版社, 1984)
[9] Liao H X, Zhu H H, Qi G T, et al. Effects of temperature on the activation dissolving behavior of sacrifice aluminum alloy anode [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sci.), 2004, 32(2): 114-116
    (廖海星, 朱鸿赫, 齐公台等. 温度对铝合金牺牲阳极活化溶解行为的影响 [J]. 华中科技大学学报(自然科学版), 2004, 32(2): 114-116)
[10] Kassner M E, Myshlyaev M M, McQueen H J. Large-strain torsional deformation in aluminum at elevated temperatures [J], Mater. Sci. Eng.,1989. A108: 45-61
[11] McQueen H J, Blum W. Recovery and recrystallization in AL alloys, fundamentals and practical applications [A]. In: Sam T, Kumai S, Kobayashi T, eds., Aluminum Alloys: Their Physical and Mechenical Properties, Proc of ICAA6 [C]. Japan, Toyohashi: Japan Institute of Light Metals, 1998: 99-1l2
[12] Venugop M A, Veluchamy P, Selvam P, et a1. X -ray photoelectron spectroscopic study of the oxide film on an aluminum-tin alloy in3.5% sodium chloride solution [J]. Corosion, 1997, 53(10): 808-812
[13] Li Z Y, Qin X, Yu Y B, et a1. The Electrochemical behavior of Al alloys containing tin and gallium in alkaline electrolyte [J]. Acta Phys. Chim. Sin., 1999,15(4): 381-384
     (李振亚, 秦学, 余远彬等. 含镓、锡的铝合金在碱性溶液中的阳极行为 [J]. 物理化学学报, 1994, 15(4): 381-384)
[14] Reboul M C, Gimenez P H, Ramearu J J.Aproposed activation mechanism for A1 anodes [J]. Corrosion, 1984,40(7): 366-370
[15] Salinas D R, Bessone J B. Electrochemical behavior of A1-5%Zn-0.1%Sn sacrificial anode in aggressive media: influence of its alloying elements and its solidification structure [J]. Corrosion, 1991, 47(9): 665-673\par

[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[6] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[7] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[8] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[9] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[10] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[11] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[14] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[15] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
No Suggested Reading articles found!