Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (1): 83-88    DOI:
技术报告 Current Issue | Archive | Adv Search |
EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER
CHANG E1;2; YAN Yonggui2; LI Qingfen3; MA Li2
1. School of Materials Science and Chemical Engineering; Harbin Engineering University; Harerbin 150001
2. Luoyang Ship Material Research Institute; State Key Laboratory for Marine Corrosion and Protection; Qingdao 266071
3. School of Mechanical and Electrical Engineering; Harbin Engineering University; Harerbin 150001
Download:  PDF(1223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The susceptibility of  921A steel to hydrogen embrittlement was investigated by slow strain rate test and electrochemical study at different cathodic polarization potentials. Fracture surfaces observation were made by three-dimension microscope and scanning electron microscope (SEM). The results showed that the elongation, time-to-fracture, and fracture energy ratio decreased and hydrogen embrittlement coefficient increased with shifting potential in the negative direction. The elongation, time-to-fracture, and fracture energy ratio displayed uniform variance trend and exhibited the highest values when polarization potential was -0.710 VSCE. when the polarization potentials were negative to -0.960 V SCE, the hydrogen embrittlement coefficient suddenly increased  and the fracture surfaces exhibited quasi-cleavage fracture. The brittle fracture was observed by three-dimension microscope when the polarization potential was -1.110 VSCE. The resistance of hydrogen embrittlement decreased when the polarization potential reached -0.960 VSCE.

 

Key words:  slow strain rate test      921A steel      hydrogen embrittlemen      cathodic polarization     
Received:  14 July 2008     
ZTFLH: 

TG172.5

 
Corresponding Authors:  CHANG E     E-mail:  change@sunrui.net

Cite this article: 

CHANG E; YAN Yonggui; LI Qingfen; MA Li. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER. J Chin Soc Corr Pro, 2010, 30(1): 83-88.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I1/83

[1] Cao C N. Principle of Corrosion Electrochemistry(second edition) [M]. Beijing: Chemical Industry Press, 2004
    (曹楚南. 腐蚀电化学原理(第二版) [M]. 北京:化学工业出版社, 2004)
[2] Billingham J, Sharp J V, Spurrier J. Review of the Performance of High Strength Steels Used Offshore [M]. UK: Health & Safety Executive, 2003: 111-117
[3] Chu W Y, Qiao L J, Chen Q Z, et al. Fracture and Environment Fracture [M]. Beijing: Science Press, 2001
    (褚武扬, 乔利杰, 陈奇志. 断裂与环境断裂 [M]. 北京:科学出版社, 2001)
[4] Du Y X, Zhang G Z. Numerical modeling of cathodic protection potential [J]. J. Chin. Soc. Corros. Prot, 2006, 26(6): 346-350
    (杜艳霞, 张国忠. 储罐底板外侧阴极保护电位分布的数值模拟 [J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350)
[5] Cao S S, Sun J X. Optimization model of the cathodic protection system [J]. J. Chin. Soc.Corros. Prot, 2007, 27(2): 114-118
    (曹圣山, 孙吉星. 阴极保护设计问题的优化模型 [J]. 中国腐蚀与防护学报, 2007, 27(2): 114-118)
[6] Yan M C, Wang J Q, Ke W, et al. Effectiveness of cathodic protection under simulated disbonded coating on pipelines [J]. J. Chin. Soc.Corros. Prot, 2007, 27(5): 257-262
    (闫茂成, 王俭秋, 柯伟等. 埋地管线剥离覆盖层下阴极保护的有效性 [J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262)
[7] Zhao J, Zhang L H, Zhao Q. A new method for calculating the downhole cathodic protection potentials of well casings [J]. J. Chin. Soc. Corros. Prot, 2001, 21(6): 363-367
    (赵健, 张莉华, 赵泉. 油井套管井下阴极保护电位计算方法研究 [J]. 2001, 21(6): 363-367)
[8] Tan W Z, Du Y L, Fu C, et al. Environment embrittlemet caused bycathodic protection of ZC-120 steel in sea water [J]. Mater.Prot., 1988, 21(3): 10-13
    (谭文志,杜元龙,傅超等. 阴极保护导致ZC-120钢在海水中环境氢脆 [J]. 材料保护,1988,21(3): 10-13)
[9] Qiu K Y, Wei B M, Fang Y H. The cathodic protection and susceptibility of hydrogen embrittlement of 16 Mn steel\linebreak in3% NaCl solution [J]. J. Nanjing Inst. Chem. Technol, 1992, 14(2): 8-14
    (邱开元,魏宝明,方耀华. 16Mn钢在3%氯化钠水溶液中的阴极保护及其氢脆敏感性 [J].南京化工学院学报, 1992, 14(2): 8-14)
[10] Wang H R, Zeng Q F. Effects of cathodic protection on stress corrosion property of 921 steel in sea water [A]. Academic Exchanging Meeting of Electrochemistry and test method [C]. Wuhan, 2004: 164-169
     (王洪仁, 曾庆福. 阴极保护电位对921钢海水中应力腐蚀性能影响研究 [A]. 2004年腐蚀电化学及测试方法学术交流会 [C]. 武汉, 2004: 164-169)
[11] Weng Y J, Zhao H Y. Evaluation of pitting sensitivity of stainless steel in NaCl solutions by means of wire beam electrodes(WBE) [J]. J. Chin. Soc.Corros. Prot, 2003, 23(6): 326-329
     (翁永基, 赵海燕. 用丝束电极(WBE)评价不锈钢在NaCl溶液中点蚀敏感性 [J]. 中国腐蚀与防护学报, 2003, 23(6): 326-329)
[12] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522-530
[13] Shin-ichi Komazaki,Rie Maruyama, Toshihei Misawa. Effect of applied cathodic potential on susceptibility to hydrogen embrittlement in high strength low alloy steel [J]. ISIJ Int., 2003, 43: 475-481
[14] Oni A. Effects of cathodic overprotection on some mechanical properties of a dual-phase low-alloy steel in sea water [J]. Constr. Build.Mater., 1996, 10: 481-484
[15] Kim S J, Jang S K, Kim J I. Electrochemical study of hydrogen embrittlement and optimum cathodic protection potential of welded high strength steel [J]. Met. Mater. Int., 2005, 11: 63-69
[16] Kim S J, Jang S K, kim J I. Effects of post-weld heat treatment on optium cathodic protection potential of high-strength steel in marine environment conditions [J]. Mater.Sci. Forum, 2005, 486-487: 133-136
[17] Batt C, Dodson J, Robinson M J. Hydrogen embrittlement of cathodically protected high strength steel in sea water and seabed sediment [J]. Bri. Corros. J., 2002, 37: 194-198
[18] Mike B, Gareth J. Determining the compatibility of high strength steels to cathodic protection [A]. NACE International Corrosion 2008 Conference & Expo [C]. 08066: 1-14
[19] GB/T 15970-2000, The Corrosion of Metal and Alloy Stress-Corrosion Test [S]. (GB/T 15970-2000, 金属和合金的腐蚀应力腐蚀实验 [S])
[20] Shu D L. The Mechanical Properties of Metals [M].Beijing: China Machine Press, 1999(束德林. 金属力学性能 [M]. 北京:机械工业出版社, 1999)
[21] Wei X J, Li J, Ke W. Crack growth retardation of single overload for A537 steel in a 3.5% NaCl solution under cathodic potential and free corrosion condition [J]. Int. J. Fatigue, 1998, 20: 225-231
[22] Cao C N, Zhang J Q. Introduction of Electrochemical Impendance Spectroscope [M]. Beijing: Science Press, 2002
     (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[23] Zhang J X, Xu N, Ge H H. Determining optimum cathodicprotection potential for brass [J]. Mater.Perform., 2006, 3: 20-24
[24] Wu J X, Fu Z G, Zhang P Q, et al. AC impendance characterisitics of low alloy steels under cathodic protection and determination of the optimum protection potential [J].J. Chin. Soc. Corros. Prot, 1989, 9(6): 160-164
     (吴继勋, 傅争光, 张普强等. 用交流阻抗技术确定船用钢的最佳阴极保护电位 [J]. 中国腐蚀与防护学报, 1989, 9(6): 160-164)
[25] Fournier L, Delafosse D, Magnin T. Cathodic hydrogen embrittlement in alloy 718 [J]. Mater.Sci. Eng., 1999, 269: 111-119

[1] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[2] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[3] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[6] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[7] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[8] Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[9] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[10] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[11] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[12] Wang GUO,Weimin ZHAO,Timing ZHANG,Tianhai DU,Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[13] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[14] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[15] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
No Suggested Reading articles found!