Please wait a minute...
J Chin Soc Corr Pro  2010, Vol. 30 Issue (1): 1-5    DOI:
技术报告 Current Issue | Archive | Adv Search |
CHARACTERIZATION OF THE POROSITY OF THE OXIDE SCALES ON FERRITIC-MARTENSITIC STEEL P91 AND P92 EXPOSED IN SUPERCRITICAL WATER
YIN Kaiju1; QIU Shaoyu1; TANG Rui1; ZHANG Qiang1;ZHANG Lefu2; LIU Hong1
1. National Key Lab.For Nuclear Fuel and Materials; Nuclear Power Institute of China; Chengdu 610041
2. School of Nuclear Science and Engineering; Shanghai Jiaotong University; Shanghai 200240
Download:  PDF(1894KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The porosity of P91 and P92 exposed to 500, 550℃/25 MPa supercritical water (SCW) environment have been investigated. The oxidized samples were characterized by scanning electron microscopy (SEM)/energy dispersion X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The oxide scale is composed of a dual-layer structure: the outer magnetite (Fe3O4) and the inner magnetite-chromite (Fe3O4-FeCr2O4). An innermost internal oxidation zone was also observed in P92. The formation of pores is related to the defect types present in the magnetite structure, there are two major defect types in magnetite, one is interstitial Fe2+, and another is vacancy which may collapse into pores when vacancy concentration is high enough in supercritical water.

Key words:  Supercritical water      Oxidation      oxide scale      porosity     
Received:  25 February 2009     
ZTFLH: 

TG171

 
Corresponding Authors:  TANG Rui     E-mail:  xajttr@163.com

Cite this article: 

YIN Kaiju; QIU Shaoyu; TANG Rui; ZHANG Qiang;ZHANG Lefu; LIU Hong. CHARACTERIZATION OF THE POROSITY OF THE OXIDE SCALES ON FERRITIC-MARTENSITIC STEEL P91 AND P92 EXPOSED IN SUPERCRITICAL WATER. J Chin Soc Corr Pro, 2010, 30(1): 1-5.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2010/V30/I1/1

[1] K. Kataoka, S. Shiga, K. Moriya, Y. Oka, S. Yoshida, H. Takahashi, Proceedings of ICAPP’03, Cordoba Spain, May 4–7, 2003, Paper No. 3258.[2] S. Teysseyre, J. McKinley, G.S. Was, D.B. Mitton, H. Kim, J.-K. Kim, R.M. Latanision, Proceedings of the 11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems- Water Reactors, Stevenson, Washington, August 10–14, 2004, pp. 63–72.[3] 韩恩厚等,超临界水环境中材料的腐蚀研究现状,腐蚀科学与防护技术,1999,11(1):53.[4] Pantip Ampornrat, Gary S. Was. Oxidation of ferritic–martensitic alloys P91, HCM12A and HT-9 in supercritical water. Journal of Nuclear Materials 371 (2007) 1–17.[5] R. L. Klueh, D. R. Harries, Development of high (7-12%) chromium martensitic steels. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, SATM International, 2001.[6] F. Abe, M. Taneike, K. Sawada. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides, International Journal of Pressure Vessels and Piping 84 (2007) 3–12.[7] Bumjoon Kim, Chanseo Jeong, Byeongsoo Lim, Creep behavior and microstructural damage of martensitic P92 steel weldment, Materials Science and Engineering A 483–484 (2008) 544–546.[8] L. Tan, Y. Yang, T.R. Allen. Oxidation behavior of iron-based alloy HCM12A exposed in supercritical water, Corrosion Science 48(2006) 3123-3138.[9] G.S. Was, P. Ampornrat, G. Gupta. Corrosion and stress corrosion cracking in supercritical water. Journal of Nuclear Materials 371(2007)176-201.[10] 高欣,吴欣强,韩恩厚,高温高压水中腐蚀产物膜的研究现状,腐蚀科学与防护技术,2007,19(2):110.[11] A. Fry, S. Osgerby, M. Wright, Oxidation of Alloys in Steam Environments – A Review, National Physical Laboratory (NPL) Report MATC(A)90, September, 2002.[12] P.J. Ennis, Y. Wouters, J. Quadakkers. in: The Effects of Oxidation on the Service Life of 9–12% Chromium Steels, Advanced Heat Resistant Steel for Power Generation, Institute of Materials 1, 1999, pp. 457–467.[13] K. Nakagawa, I. Kajigaya, T. Yanagisawa, M. Sato, M. Abe, Study of Corrosion Resistance of Newly Developed 9–12% Cr Steels for Advanced Units, pp. 468–481.[14] G.E. Totten, M.A.H. Hows. Steel Heat Treatment Handbook, Marcel Dekker, New York, 1997.[15] H.S.C. O’Neill, W.A. Dollase, Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4, Phys. Chem. Miner. 20 (1994) 541–555.[16] T.I. Barry, A.T. Dinsdale, J.A. Gibsy, B. Hallstedt, M. Hillert, B. Jansson, S. Jonsson, B. Sundman, J.R. Taylor, Petten Symposium on Phase Diagrams, Institute of Metals, 1990.
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[4] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[5] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[6] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[7] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[8] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[9] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[10] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[11] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[14] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[15] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
No Suggested Reading articles found!