Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (6): 401-404    DOI:
技术报告 Current Issue | Archive | Adv Search |
INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES
YU Fang; GAO Kewei; LU Minxu
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
Download:  PDF(2094KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure and mechanical properties of CO2 corrosion scale formed on X65 pipeline steel in simulated CO2 corrosion environment in oil field under various flow rates were investigated. XRD and EDS analysis indicate that at static condition, the composition of the scale is (Fe,Ca,Mg)CO3, while the scale changes to (Fe,Ca)CO3 at dynamic conditions. The increment in flow rate increased the thickness of the scale remarkably, but had little influence on the hardness and Young's modulus of the scale. The fracture toughness of the scale exhibited the lowest value at the flow rate of 0.5 m/s, whereas the adhesion strength increased with increasing the flow rate.

Key words:  X65 pipeline steel      CO2 corrosion      corrosion scale      flow      mechanical properties     
Received:  28 March 2008     
ZTFLH: 

TG172.9

 
Corresponding Authors:  GAO Kewei     E-mail:  kwgao@mater.ustb.edu.cn

Cite this article: 

YU Fang GAO Kewei LU Minxu. INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES OF CO2 CORROSION SCALE FORMED UNDER VARIOUS FLOW RATES. J Chin Soc Corr Pro, 2009, 29(6): 401-404.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I6/401

[1] Mora-Mendoza J L, Chacon-Nava J G. Influence of turbulent flow on the localized corrosion process of mild steel with inhibited aqueous carbon dioxide systems [J].Corrosion,2002,58(7):608-619
[2] Nesic S, Solvi G T, Enerhaug J.Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide [J]. Corrosion, 1995, 51(10): 773-787
[3] Schmitt G, Simon T, Hausler R H. CO2 erosion corrosion and its inhibition under extreme shear stresses. II. performance of inhibitors [C]. Corrosion/93, Houston,\linebreak TX:NACE,1993:86
[4] Schmitt G, Bosch C, Pankoke U, et al. Evaluation of critical flow intensities for FILC in sour gas production. Corrosion/98 [C]. Houston,TX:NACE,1998:46
[5] Schmitt G,Mueller M. Critical wall shear stresses in CO2 corrosion of carbon steel [C]. Corrosion/99,Houston,TX: NACE,1999:44
[6] Schmitt G,Gudde T. Local mass transport coefficients and local wall shear stresses at flow disturbances.Corrosion/95 [C]. Houston,TX:NACE,1995:102
[7] Schmitt G, Bosch C. A probabilistic model for flow induced localized corrosion [C]. Corrosion/00, Houston,TX:NACE,2000:49
[8] Schmitt G, Muekker M, Paperfuss M, et al. Understanding localized CO2 corrosion of carbon steel from physical properties of iron carbonate scales [C]. Corrosion/99, Houston,TX:NACE,1999:38
[9] Pharr G M. Measurement of mechanical properties by ultra-low load indentation [J]. Mater. Sci. Eng., 1998, A253: 151-159

[1] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[3] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[4] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[5] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[6] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[7] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[8] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[9] Chong SUN, Yong WANG, Jianbo SUN, Tao JIANG, Weimin ZHAO, Yanchun ZHANG. Investigation Progress on Corrosion Behavior of Supercr-itical CO2 Transmission Pipelines Containing Impurities in CCS[J]. 中国腐蚀与防护学报, 2015, 35(5): 379-385.
[10] Shuan LIU, Xia ZHAO, Changwei CHEN, Baorong HOU, Jianmin CHEN. Corrosion Behavior of Pipeline Steel X65 in Oilfield[J]. 中国腐蚀与防护学报, 2015, 35(5): 393-399.
[11] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[12] FAN Fengqin, SONG Jiwen, LI Chengjie, DU Min. Effect of Flow Velocity on Cathodic Protection of DH36 Steel in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[13] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[14] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[15] ZHAO Jingmao, LI Jun. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
No Suggested Reading articles found!