Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (4): 193-196     DOI:
Research Report Current Issue | Archive | Adv Search |
Effect of grain size on the atmospheric corrosion resistance of carbon steel in industrial environment
;;;;;
钢铁研究总院
Download:  PDF(269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  There kinds of carbon steels of different grain size with the same chemical composition were prepared by different rolling and heat treatment processes.The relationship between grain size and atmospheric corrosion resistance of carbon steel in industrial environment has been investigated by cyclic immersion corrosion test, micro-analysis of rust and electrochemical test, the polarization curves of different grain size steel in 10% H2SO4 solution were also tested. The results showed that the crack and cavity in the rust after cycle immersion corrosion test were decreased and the atmospheric corrosion resistance was increased by grain refinement of carbon steel from 50 μm to 4μm, but the corrosion rate of carbon steel was increased by grain refinement in 10% H2SO4 solution.The effect of grain sixe on the corrosion current density of local grain boundary was analysed and the mechanics of corrosion was discussed.
Key words:  grain size      carbon steel      grain refinement      atmospheric corrosion resistance      
Received:  01 March 2006     
ZTFLH:  TG174  
  TG142。1  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. Effect of grain size on the atmospheric corrosion resistance of carbon steel in industrial environment. J Chin Soc Corr Pro, 2007, 27(4): 193-196 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I4/193

[1]Weng Y Q.Microstructure refinement of structural steel in China[J].Iron and Steel Institute of Japan International,2003,43(11):1675-1682
[2]Kalmykov V V,Razdobreev V G.Effect of the structure of carbon steel on its corrosion in3%NaCl solution under alternating immer-sion[J].Protection of Metals,1999,35(6):598-599
[3]Li Y,Wang F,Liu G.Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel[J].Corrosion,2004,60(10):891-896
[4]Li T F.The role of metallic grain boundary in high temperature oxidation[J].J.Chin.Soc.Corros.Prot.,2002,22(3):80-182(李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002,22(3):180-182)
[5]Han W,Wang J,Wang Z Y,et al.Study on atmospheric corro-sion of low alloy steels[J].J.Chin.Soc.Corros.Prot.,2004,24(3):147-150(韩薇,汪俊,王振尧等.碳钢与低合金钢耐大气腐蚀规律研究[J].中国腐蚀与防护学报,2004,24(3):147-150)
[6]Meng G Z,Li Y,Wang F H.Electrochemical behavior of Fe-20Cr nanocrystalline coatings[J].J.Chin.Soc.Corros.Prot.,2006,26(1):11-17(孟国哲,李瑛,王福会.Fe-20Cr纳米涂层的电化学行为[J].中国腐蚀防护与学报,2006,26(1):11-17)
[7]Zha Q X.Dynamics of Electrode Process[M].Beijing:Science Press,2002(查全性.电极过程动力学导论[M].北京:科学出版社,2002)
[8]Chao C N.Electrochemistry of Corrosion[M].Beijing:Chemical Industry Press,1985(曹楚南.腐蚀电化学[M].北京:化学工业出版社,1985)
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[3] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[4] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[5] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[6] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[7] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[8] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[9] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[10] Xiaobo MENG,Wubin JIANG,Yongli LIAO,Ruihai LI,Zhijun ZHENG,Yan GAO. Investigation on Atmospheric Corrosion Behavior of Transmission Tower Materials in Simulated Industrial Environments[J]. 中国腐蚀与防护学报, 2017, 37(5): 460-466.
[11] Qingli CHENG,Bin TAO,Shuan LIU,Quanzhen LIU,Weihua ZHANG,Songbai TIAN,Liping WANG. Corrosion Behaviour of Q235B Carbon Steel in Sediment Water From Crude Oil[J]. 中国腐蚀与防护学报, 2017, 37(2): 126-134.
[12] Yongsheng HAO,Abdullahi SANI Luqman,Lixin SONG,Guobao XU,Tiejun GE,Qinghong FANG. Corrosion Inhibition Effect of Phytic Acid Conversion Coating Formed on Q235 Carbon Steel in Acidic and Neutral Solutions[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[13] Jihui WANG,Huajie YAN,Wenbin HU. Preparation and Inhibition Behavior of Molybdate Intercalated ZnAlCe-hydrotalcite[J]. 中国腐蚀与防护学报, 2016, 36(6): 637-644.
[14] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[15] Chunxia WANG,Jingping CHEN,Xiaohong ZHANG,Chengyin WANG. Corrosion Inhibition of Octyl Isoquinolinium Bromide on Q235 Carbon Steel in HCl Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
No Suggested Reading articles found!