Please wait a minute...
J Chin Soc Corr Pro  2007, Vol. 27 Issue (1): 60-64     DOI:
Review Current Issue | Archive | Adv Search |
SURFACE ANALYSIS METHODS USED INMICROBIALLY INFLUENCED CORROSION STUDY
;;;
中国海洋大学化学化工学院
Download:  PDF(965KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  This paper reviews the application of surface analysis methods used in the microbially influenced corrosion (MIC) study.These methods include FTIR spectroscopy,SEM,ESEM,AFM and CLSM.Epifluorescent microscopy used in microbiology and biofilm study is included in this paper.Some state-of-the-art technique time-of-flight-secondary-ion mass spectrometry is introduced in this paper.
Key words:  microbially influenced corrosion      biofilm      surface analysis technique      
Received:  25 September 2005     
ZTFLH:  TG174  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

;. SURFACE ANALYSIS METHODS USED INMICROBIALLY INFLUENCED CORROSION STUDY. J Chin Soc Corr Pro, 2007, 27(1): 60-64 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2007/V27/I1/60

[1]Heber J R,Sevenson R,Boldman O.Infrared spectroscopy as ameans for identification of bacteria[J].Science,1952,116:111-112
[2]Norris K P.Infrared spectroscopy and its application to microbiology[J].Hygiene,1959,57:326-345
[3]J櫣rgen Schmitt,Hans-Curt Flemming.FTIR-spectroscopy in mi-crobial and material analysis[J].International Biodeterioration&Biodegradation,1998,41:1-11
[4]Nivens D E,Schmitt J.Multichannel ATR/FT-IR spectrometer foron-line examination of microbial biofilms[J].Appl.Spectroscopy,1993,5:668-671
[5]Schmitt J,Flemming HC.Water binding in biofilms[J].Water Sci.Technol.,1999,39:77-82
[6]Schmitt J,Nivens D,White D C,et al.Changes of biofilm propertiesin response to sorbed substances-an FTIR-ARTstudy[J].WaterSci.Technol.,1995,32:149-155
[7]Olinger J M,Griffiths P R.Effects of sample dilution and particlesize/morphology on diffuse reflection spectra of carbohydrate systemsin the near-and mid-infrared[J].Appl.Spectroscopy,1993,47(6):687-694
[8]Nivens D E,Nichols P D,Henson J M,et al.Reversible accelerationof the corrosion of AISI304 stainless steel exposed to seawater in-duced by growth and secretions of the marine bacterium vibrio natr-iegens[J].Corrosion,1986,42(4):204-209
[9]Tadashi Matsunaga,Tae-kyu Lim.Electrochemical prevention ofbiofouling[J].Electrochemistry,2000,68(11):847-852
[10]Smith J J,McFeters G A.Mechanisms of INT(2-(4-iodophe-nyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride),and CTC(5-cyano-2,3-ditolyltetrazolium chloride)reduc-tion in Escherichia coli K-12[J].J.Microbiological Methods,1997,29:161-175
[11]Schaule G,Flemming HC,Ridgway HF.Use of5-cyano-2,3-ditolyltetrazolium chloride for quantifying planktonic and sessile re-spiring bacteria in drinking water[J].Appl.Environ.Microbiol.,1993,59:3850-3857
[12]Rodriguez G G,Phipps D,Ishiguro K,et al.Use of a fluorescentredox probe for direct visualization of actively respiring bacteria[J].Appl.Environ.Microbiol.,1992,58:1801-1808
[13]Boulos L,Pr啨vost M,Barbeau B,et al.LIVE/DEAD(BacLightTM:application of a newrapid staining method for direct enumeration ofviable and total bacteria in drinking water[J].J.MicrobiologicalMethods,1999,37:77-86
[14]Ramalho R,Cunha J,Teixeira P,et al.Improved methods for the e-numeration of heterotrophic bacteria in bottled mineral waters[J].J.Microbiological Methods,2001,44:97-103
[15]Okochi M,Taguchi T,Tauboi M,et al.Fluorometric observation ofviable and dead adhering diatoms using TO-PRO-1 iodide andits application to the estimation of electrochemical treatment[J].Appl.Microbiol.Biotechnol.,1999,51:364-369
[16]Hobbie J E,Daly R J,Jaspers S.Use of nuclepore filters for count-ing bacteria by fluorescent microscopy[J].Appl.Environ.Microbi-ol.,1977,33:1225-1228
[17]Porter K G,Feig Y S.The use of DAPI for identifying and countingaquatic microflora[J].Limnol Oceanogr,1980,25:943-948
[18]Lisle J T,Broadaway S C,Prescott A M,et al.Effects of starvationon physiological activity and chlorine disinfection resistance inEscherichia coli O157:H7[J].Appl.Environ.Microbiol.,1998,64:4658-4662
[19]Chang Y C,Puil M L,Biggerstaff J,et al.Direct estimation of bio-film density on different pipe material coupons using a specificDNA-probe[J].Molecular and Cellular Probes,2003,17:237-243
[20]Thien-Fah C Mah,George A O’Toole.Mechanisms of biofilm re-sistance to antimicrobial agents[J].Trends in Microbiology,2001,9:34-39
[21]Chang HT,Rittmann B E.Biofilm loss during sample preparationfor scanning electron microscopy[J].Wat.Res.,1986,20:1451-1456
[22]Little B,Wagner P,Ray R,et al.Biofilms:an ESEM evaluation ofartifacts introduced during SEM preparation[J].J.Ind.Microbi-al.,1991,8:213-222
[23]Sutton N A,Hughes N,Handley P S.A comparison of conventionalSEM techniques,low temperature SEM and the electroscan wetscanning electron microscope to study the structure of a biofilm ofStreptococcus crista CR3[J].J.Appl.Bacteriol.,1994,76:448-454
[24]Patricia S Guiamet,Sandra G,G幃mez de Saravia,H啨ctor A Videla.An innovative method for preventing biocorrosion through microbialadhesion inhibition[J].International Bioddeterioration&Biode-gradeation,1999,43:31-35
[25]Christopher J G.The application of the environmental scanning e-lectron microscope in biological and materials science[J].Biologyof Cell,1998,90:249
[26]Silyn-Roberts G,Lewis G.Atechnique in confocal laser microsco-py for establishing biofilm coverage and thickness[J].Water Sci.Technol.,1997,36:117-124
[27]Neu T R,Lawrence J R.Development and structure of microbialbiofilms in river water studied by confocal laser scanning microsco-py[J].FEMS Microbiology Ecology,1997,24:11-25
[28]Lawrence J R,Neu TR,Swerhone G D W.Application of multipleparameter imaging for the quantification of algal,bacterial and ex-opolymer components of microbial biofilms[J].J.MicrobiologicalMethods,1998,32:253-261
[29]Stewart P S,Murga R,Srinivasan R,et al.Biofilm structural hetero-geneity visualized by three microscopic methods[J].Wat.Res.,1995,29:2006-2009
[30]Beech I B.The potential use of atomic force microscopy for studyingcorrosion of metals in the presence of bacteria biofilms-an over-view[J].International Biodeterioration&Biodegradation,1996,43:141-149
[31]Beech I B,Cheung C W S,Johnson D B,et al.Comparative studiesof bacterial biofilms on steel surfaces using atomic force microscopyand environmental scanning electron microscopy[J].Biofouling,1996,10:65-77
[32]Xu L C,Fang HHP,Chan K Y.Atomic force microscopy study ofmicrobiologically influenced corrosion of mild steel[J].J.Electro-chem.Soc.,1999,146:4455-4460
[33]Geiser M,Avci R,Lewandowski Z.Microbially initiated pitting on316L stainless steel[J].International Biodeterioration&Biodegra-dation,2002,49:235-243
[34]Xu L C,Chan K Y,Fang H H P.Application of atomic force mi-croscopy in the study of microbiologically influenced corrosion[J].Mater.Characterization,2002,48:195-203
[35]Goddard D T,Steele A,Beech I B.Towards in situ atomic force mi-croscopy imaging of biofilm growth on stainless steel[J].ScanningMicrosc.,1996,10:983-988
[36]Telegdi J,Keresztes Zs,Palinkas G,et al.Microbially influencedcorrosion visualized by atomic force microscopy[J].Appl.Phys.A,1998,66:S639-S642
[37]Dufr毢ne Y F.Application of atomic force microscopy to microbialsurfaces:from reconstituted cell surface layers to living cells[J].Micron,2001,32:153-165
[38]Surman B,Walker J T,Goddard D T,et al.Comparison of micro-scope techniques for the examination of biofilms[J].J.Microbio-logical Methods,1996,25:57-70
[39]From http://www.germantech.com.cn/docc/ion-tof.htm
[40]Poleunis C,Rubio C,Comp埁re C,et al.TOF-SIMS chemical map-ping study of protein adsorption onto stainless steel surfaces im-mersed in saline aqueous solutions[J].Appl.Surf.Sci.,2003,(203-204):693-697
[41]Poleunis C,Comp埁re C,Bertrand P.Time-of-flight secondary ionmass spectrometry:characterization of stainless steel surface im-mersed in natural seawater[J].J.Microbiological Methods,2002,48:195-205
[42]Shi X,Avci R,Geiser M,et al.Comparative study in chemistry ofmicrobially and electrochemically induced pitting of 316L stainlesssteel[J].Corros.Sci.,2003,45:2577-2595
[43]Shi X,Avci R,Lewandowski Z.Electrochemistry of passive metalsmodified by manganese oxides deposited by Leptothrix discophora:two-step model verified by TOF-SIMS[J].Corros.Sci.,2002,44:1027-1045
[44]Shi X,Avci R,Lewandowski Z.Microbially deposited manganeseand iron oxides on passive metals-their chemistry and conse-quences for material performance[J].Corrosion,2002,58:728-738
[1] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[2] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[3] Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[4] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[5] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[6] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[7] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[8] LIU Bin, DUAN Jizhou, HOU Baorong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[9] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
[10] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
[11] LIU Hongfang LIU Tao. GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL[J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98.
[12] DU Yili LI Jin GE Xiaopeng YUAN Weishuang. AFM STUDY OF MICROBIOLOGICALLY INFLUENCED CORROSION OF COPPER ALLOYS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 321-324.
[13] . The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .
[14] . A Comparative Study on Sulfate Reducing Bacteria Influenced Corrosion of Copper Alloys[J]. 中国腐蚀与防护学报, 2007, 27(6): 342-347 .
[15] ;. Effect of MDOPD on Biofilm Property in Culture Medium Inoculated SRB[J]. 中国腐蚀与防护学报, 2007, 27(3): 167-171 .
No Suggested Reading articles found!