Please wait a minute...
J Chin Soc Corr Pro  2006, Vol. 26 Issue (4): 245-250     DOI:
Failure Analysis Current Issue | Archive | Adv Search |
Comparison on the Failure Behaviour of the LPG Spherical Tank Manufactured from Different Steels under the Wet H2S Environment
;;
南京工业大学205#
Download:  PDF(530KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Comparative studies on the failure behaviour of the liquefied petroleum gas(LPG) spherical tanks,which were manufactured from 16MnR steel and SPV50Q steel respectively and working under the wet H2S environment,were conducted.By observing the crack feature of the samples cut from the severely corroded shell plates removed from the integral 16MnR spherical tank and the crack morphologies of the metallurgical replica photos made on the internal surface of SPV50Q tank on site,as well as analysing the hardness and welding residual stress measured on site,it was found that the failure of 16MnR tank was attributed to hydrogen-induced cracking(HIC) and the damages occurred on the base metal.While for SPV50Q tank,the failure was attributed to sulfide stress corrosion cracking(SSCC) and cracks mainly appeared in the heat-affected zone(HAZ) around the welded joints.
Key words:  failure      wet H2S      hydrogen-induced cracking      sulfide stress corrosion cracking      
Received:  05 December 2005     
ZTFLH:  TG172  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. Comparison on the Failure Behaviour of the LPG Spherical Tank Manufactured from Different Steels under the Wet H2S Environment. J Chin Soc Corr Pro, 2006, 26(4): 245-250 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2006/V26/I4/245

[1]Merick R D.Refinery experience with cracking in wet H2S environ-ment[J].Mater.Perf.,1988,27(1):30-36
[2]Cantwell J E.LPG storage vessel cracking experience[J].Mater.Perf.,1988,27(10):79-82
[3]Trivedi D K,Gupta S C.Cracking in liquid petroleum gas Hortonspheres[J].Mater.Perf.,1997,36(7):59-61
[4]Zhang Y L,Wang J,Shan X P,et al.Critical crack size of CNGcylinder steel in H2S environment[J].J.Chin.Soc.Corros.Prot.,2005,25(5):285-290(张亦良,王晶,陕小平等.CNG气瓶在不同H2S浓度中的临界裂纹尺寸[J].中国腐蚀与防护学报,2005,25(5):285-290)
[5]Wang J,Chen J J,Li X B,et al.The concentration distribution ofH2S in the waste water from oil platform and its influences on thecorrosion behavior of the steel structure of platform[J].J.Chin.Soc.Corros.Prot.,2003,23(1):38-45(王佳,陈家坚,李相波等.油田排污水中H2S的分布及其对平台钢结构设施腐蚀行为的影响[J].中国腐蚀与防护学报,2003,23(1):38-45)
[6]Zhang Y L,Li L S,Wang M,et al.Criteria to avoid sulfide stresscracking provided by EFC and its verification[J].J.Chin.Soc.Cor-ros.Prot.,2002,22(3):138-143(张亦良,李林生,王慕等.防止硫化氢应力腐蚀失效的EFC准则应用及验证[J].中国腐蚀与防护学报,2002,22(3):138-143)
[7]Ikeda A,Kaneko T,Ando Y.On the evaluation methods of sulfidestress cracking susceptibility of carbon and low alloy steels[J].Cor-ros.Sci.,1987,27:1099-1115
[8]Garber R.Higher hardenability low alloy steels for H2S resistant oilcountry tubular[J].Corrosion,1983,39(3):83-91
[9]NACE Standard RP0472.Methods and controls to prevent in-ser-vice environmental cracking of carbon steel weldments in corrosivepetroleum refining environments[S].1987
[10]Adam Mazur.Segregation bands’role in H2S cracking of steels[J].Mater.Perf.,1995,34(7):52-54
[11]Maria Sozańka,Jaroslav Sojka,Petra Bet′ákov,áet al.Examinationof hydrogen interaction in carbon steel by means of quantitativemicrostructure and fracture descriptions[J].Mate.Charact.,2001,46:239-241
[12]Snape E.Sulfide stress corrosion cracking of some medium and lowalloy steel[J].Corrosion,1967,23(6):154-172
[13]Albarran J L,Martinez L,Lopez H F.Effect of heat treatment onthe stress corrosion resistance of microalloyed pipeline steel[J].Corros.Sci.,1999,41:1037-1049
[1] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[2] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[3] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[4] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[5] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[6] Xiaohan JIN,Jiming HU,Jianqing ZHANG. Anode Materials Used in Electrolytic System Containing Organic Compounds and Their Failure Characteristics[J]. 中国腐蚀与防护学报, 2015, 35(3): 199-204.
[7] SHI Xianbo, WANG Wei, YAN Wei, SHAN Yiyin, YANG Ke. Effect of Martensite/Austenite (M/A) Constituent on H2S Resistance of High Strength Pipeline Steels[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[8] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[9] HU Chunlian, HOU Shanglin. FAILURE ANALYSIS OF PLUNGERS SPRAYED BY  Ni-BASE ALLOY ON HYDRAULIC FEEDBACK SUBSURFACE PUMP[J]. 中国腐蚀与防护学报, 2012, 32(1): 80-84.
[10] YANG Genzhu, LI Qinghua, LIU Guoshuai, WANG Bo, LIU Jie, XIONG Jinping, HE Shaoping, LU Zhengliang. CORROSION OF TREMIE PIPE OF W0714 FILM EVAPORATOR OF HEXANOLACTAM[J]. 中国腐蚀与防护学报, 2011, 31(6): 488-492.
[11] SUN Baocai, LI Shuxin, YU Shurong, ZENG Hailong. PREDICTION OF REMAINING STRENGTH OF CORRODED PIPELINES BASED ON IMPROVED BP ALGORITHM[J]. 中国腐蚀与防护学报, 2011, 31(5): 404-408.
[12] RAO Sixian, WAN Zhang, SONG Guangxiong,ZHANG Zheng, ZHONG Qunpeng. CORROSION FAILURE MODE ANALYSIS OF INTERGRANULAR ATTACK AND HYDROGEN BRITTLENESS BASED ON FAILURE RULES[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[13] LIU Wenhong, LI Lei, LIU Yonggang, PAN Zhiyong, WANG Jianjun. MECHANISM OF EROSION-CORROSION WASHOUT FAILURE IN INTERNAL UPSET TRANSITION ZONE FOR DRILLPIPE BASED ON APPLICATION OF FLOW FIELD ANALYSIS[J]. 中国腐蚀与防护学报, 2011, 31(2): 160-164.
[14] CUI Shihua, LI Chunfu, WANG Pengfei, DENG Hongda. STRESS CORROSION CRACKING OF P110 IN ENVIRONMENT OF HIGH CONTENTS OF H2S AND CO2[J]. 中国腐蚀与防护学报, 2010, 30(3): 213-216.
[15] LI Chunfu WANG Rong NIU Yanhua ZHU Zehua LI Tianlei. INFLUENCE OF DOPED NANOPARTICLES ON THE ANTICORROSION PERFORMANCE OF THE PLASMA SPRAYING Al2O3 + 13 mass% TiO2 COATINGS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 331-336.
No Suggested Reading articles found!