Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 199-204    DOI: 10.11902/1005.4537.2014.093
Current Issue | Archive | Adv Search |
Anode Materials Used in Electrolytic System Containing Organic Compounds and Their Failure Characteristics
Xiaohan JIN,Jiming HU(),Jianqing ZHANG
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Download:  HTML  PDF(591KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, anode materials used for organic compounds containing aqueous electrolyte were introduced. Further, their failure characteristics were analyzed in terms of surface fouling and accelerated dissolution. Meanwhile, the strategies for failure prevention, including the optimization of chemical composition and anodic re-activation of electrode, were reviewed in details. Finally, the investigation of anode materials in organic compounds containing electrolyte was also prospected.

Key words:  anode      organic compound      electrolytic system      failure characteristic     

Cite this article: 

Xiaohan JIN,Jiming HU,Jianqing ZHANG. Anode Materials Used in Electrolytic System Containing Organic Compounds and Their Failure Characteristics. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 199-204.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.093     OR     https://www.jcscp.org/EN/Y2015/V35/I3/199

[1] Beer H B. Method of making an electrode having a coating containing a platinum metal oxide thereon [P]. US Patent, 1996 549194,
[2] Zha Q X. The Introduction of Electrode Process Kinetics[M]. 2nd ed. Beijing: Science Press, 1987 (查全性.电极过程动力学导论[M]. 第二版. 北京: 科学出版社, 1987)
[3] Meng H M. High catalytic activity insoluble nanocrystalline metal oxide coating electrode[J]. Adv. Mater. Ind., 2002, (5): 68 (孟惠民. 高催化活性纳米晶贵金属氧化物涂层不溶性电极[J]. 新材料产业, 2002, (5): 68)
[4] Morimitsu M, Tamura H, Matsunaga M, et al. Polarization behaviour and lifetime of IrO2-Ta2O5-SnO2/Ti anodes in p-phenolsulfonic acid solutions for tin plating[J]. J. Appl. Electrochem., 2000, 30(4): 511
[5] Panizza M, Cerisola G. Influence of anode material on the electrochemical oxidation of 2-naphthol: Part 1. Cyclic voltammetry and potential step experiments[J]. Electrochim. Acta, 2003, 48(23): 3491
[6] Polcaro A, Palmas S, Renoldi F, et al. On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment[J]. J. Appl. Electrochem., 1999, 29(2): 147
[7] Kim K W, Lee E H, Kim J S, et al. Material and organic destruction characteristics of high temperature-sintered RuO2 and IrO2 electrodes[J]. J. Electrochem. Soc., 2002, 149(12): 187
[8] Bock C, MacDougall B. Influence of metal oxide properties on the oxidation of organics[J]. J. Electroanal. Chem., 2000, 491(1/2): 48
[9] Cestarolli D, De Andrade A. Electrochemical and morphological properties of Ti/Ru0.3Pb(0.7-x)/TixO2-coated electrodes[J]. Electrochim. Acta, 2003, 48(28): 4137
[10] Yang C H, Wen T C. Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode[J]. J. Appl. Electrochem., 1994, 24(2): 166
[11] Kim S, Kim T H, Park C, et al. Electrochemical oxidation of polyvinyl alcohol using a RuO2/Ti anode[J]. Desalination, 2003, 155(1): 49
[12] Feng Y, Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Res., 2003, 37(10): 2399
[13] Takahashi M. Electrochemical study of high performance titanium base electrodes covered with platinum family elements by thermal decomposition for industrial electrolysis. IV: Performance improvement of iridium oxide electrodes as counter electrodes with oxygen evolution in organic electrolysis.[J]. Soda Chlorine, 1988, 39: 531 (高橋正雄. 工業電解用チタン基体白金族熱分解被覆電極の高性能化に関する電気化学的研究IV有機電解の対極酸素発生電極としての酸化イリジウム電極の性能向上[J]. ソーダと塩素, 1988, 39: 531)
[14] Watanabe A, Minoru U, Kameyama T. High oxygen evolution overpotential electrode material--based on the use of PbO2 electrodes (The latest progress of electrode materials <Special Issue>)[J]. Electrochemistry (The Electrochemical Society of Japan), 1988, 56(10): 819 (渡辺昭雄, 植田稔, 亀山哲也.高酸素過電圧電極材料--2 酸化鉛電極を中心に (電極材料の新たな展開<特集>)[J]. 電気化学および工業物理化学, 1988, 56(10): 819)
[15] Hu J M, Meng H M, Sun D B, et al. Effect of SnO2 addition on the service life and electrochemical properties of Ti/IrO2+Ta2O5 anodes in phenolsulfonic acid solution[J]. Acta Metall. Sin.(Engl. Lett.), 2000, 13(4): 937
[16] Hu J M, Zhang J Q, Meng H M, et al. Electrochemical activity, stability and degradation characteristics of IrO2-based electrodes in aqueous solutions containing C1 compounds[J]. Electrochim. Acta, 2005, 50(27): 5370
[17] Hu J M, Sun X J, Hou Y Y, et al. Degradation characteristics of IrO2-type DSA? in methanol aqueous solutions[J]. Electrochim. Acta, 2008, 53(7): 3127
[18] Beck F. Wear mechanisms of anodes[J]. Electrochim. Acta, 1989, 34(6): 811
[19] Vallet C, Tilak B, Zuhr R, et al.Rutherford backscattering spectroscopic study of the failure mechanism of (RuO2+TiO2)/Ti thin film electrodes in H2SO4 solutions[J]. J. Electrochem. Soc., 1997,144(4): 1289
[20] Hu J M, Meng H M, Zhang J Q, et al. Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid[J]. Corros. Sci., 2002, 44(8): 1655
[21] Rossi A, Boodts J. Ir-based oxide electrodes: oxygen evolution reaction from mixed solvents[J]. J. Appl. Electrochem., 2002, 32(7):
null 735
[22] Zanta C L P S, de Andrade A R, Boodts J F C. Electrochemical behaviour of olefins: oxidation at ruthenium-titanium dioxide and iridium-titanium dioxide coated electrodes[J]. J. Appl. Electrochem., 2000, 30(4): 467
[23] Zanta C L P S, de Andrade A R, Boodts J F C. Solvent and support electrolyte effects on the catalytic activity of Ti/RuO2 and Ti/IrO2 electrodes: oxidation of isosafrole as a probe model[J]. Electrochim. Acta, 1999, 44(19): 3333
[24] Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidation of chlorinated phenols[J]. Environ. Sci. Technol., 1999, 33(9): 1453
[25] Fino D, Jara C C, Saracco G, et al. Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol[J]. J. Appl. Electrochem., 2005, 35(4): 405
[26] Li Y, Liu M, Xiang C, et al. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions[J]. Thin Solid Films, 2006, 497(1/2): 270
[27] Ferreira M, Varela H, Torresi R M, et al. Electrode passivation cau-sed by polymerization of different phenolic compounds [J]. Electrochim. Acta, 2006, 52(2): 434
[28] E?erskis Z, Jusys Z. Electropolymerization of chlorinated phenols on a Pt electrode in alkaline solution Part I: A cyclic voltammetry study[J]. J. Appl. Electrochem., 2001, 31(10): 1117
[29] Pani? V, Dekanski A, Vidakovi? T, et al. Oxidation of phenol on RuO2-TiO2/Ti anodes[J]. J. Solid State Electrochem., 2005, 9(1): 43
[30] Terashima C, Rao T N, Sarada B, et al. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection[J]. Anal. Chem., 2002, 74(4): 895
[31] Wang J, Farrell J. Electrochemical inactivation of triclosan with boron doped diamond film electrodes[J]. Environ. Sci. Technol., 2004, 38(19): 5232
[32] Wang X M, Hu J M, Zhang J Q, et al. Characterization of surface fouling of Ti/IrO2 electrodes in 4-chlorophenol aqueous solutions by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2008, 53(8): 3386
[33] Hou Y Y, Hu J M, Liu L, et al. Effect of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions[J]. Electrochim. Acta, 2006, 51(28): 6258
[34] Ueda M, Watanabe A, Kameyama T, et al. Performance characteristics of a new type of lead dioxide-coated titanium anode[J]. J. Appl. Electrochem., 1995, 25(9): 817
[35] Hosoya K, Sugimoto K. Relationship between corrosion behavior of iron in methanol-water solutions and physicochemical characteristics of the solutions[J]. J. Jpn. Inst. Met., 1997, 61(3): 209
[36] Duo I, Michaud P A, Haenni W, et al. Activation of boron-doped diamond with IrO2 clusters[J]. Electrochem. Solid-State Lett., 2000 3(7): 325
null
[37] Ellis S R, Hampson N A, Ball M C, et al. The lead dioxide electrode[J]. J. Appl. Electrochem., 1986, 16(2): 159
[38] Tong S P, Ma C A, Feng H. A novel PbO2 electrode preparation and its application in organic degradation[J]. Electrochim. Acta, 2008, 53(6): 3002
[39] Yao Y W, Zhao C M, Zhu J. Preparation and characterization of PbO2-ZrO2 nanocomposite electrodes[J]. Electrochim. Acta, 2012, 69: 146
[40] Liu M, Leng S, Chen S Y, et al. Degradation of nitrobenzene wastewater with modified Ti/SnO2-Sb electrode[J]. Chem. J. Chin.Univ., 2013, 34(8): 1899 (刘淼, 冷粟, 陈嵩岳等. 改性Ti/SnO2-Sb电极降解硝基苯废水[J]. 高等学校化学学报, 2013, 34(8): 1899)
[41] Zhang L C, Xu L, He J, et al. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration[J]. Electrochim. Acta, 2014, 117: 192
[42] Bock C, Smith A, MacDougall B. Anodic oxidation of oxalic acid using WOx based anodes[J]. Electrochim. Acta, 2002, 48(1): 57
[43] Bock C, MacDougall B. The electrochemical oxidation of organics using tungsten oxide based electrodes[J]. Electrochim. Acta, 2002 47(20): 3361
null
[44] Habazaki H, Hayashi Y, Konno H. Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment[J]. Electrochim. Acta, 2002, 47(26): 4181
[45] Kim K W, Lee E H, Kim J S, et al. A study on performance improvement of Ir oxide-coated titanium electrode for organic destruction[J]. Electrochim. Acta, 2002, 47(15): 2525
[46] Zhang Z X. .Techniques of Titanium Electrodes.[M]. 2nd ed Beijing: Metallurgical Industry Press, 2003 (张招贤. 钛电极工学[M]. 第二版. 北京: 冶金工业出版社, 2003)
[47] Zhao G H, Cui X, Liu M C, et al. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J]. Environ. Sci. Technol., 2009, 43(5): 1480
[48] Wang Y Q, Gu B, Xu W L. Electro-catalytic degradation of phenol on several metal-oxide anodes[J]. J. Hazard. Mater., 2009, 162(2/3): 1159
[49] Shao D, Yan W, Li X L, et al. A highly stable Ti/TiHX/Sb-SnO2 anode: preparation, characterization and application[J]. Ind. Eng. Chem. Res., 2014, 53(10): 3898
[50] Chen A, Nigro S. Influence of a nanoscale gold thin layer on Ti/SnO2-Sb2O5 electrodes[J]. J. Phys. Chem., 2007, 107(48)B: 13341
[51] Carlesi J C, Fino D, Specchia V, et al. Electrochemical removal of antibiotics from wastewaters[J]. Appl. Catal., 2007, 70(1): B: 479
[52] Xu W L, Wang Y Q, Gao M G. Application of ultrasound in water treatment[J]. Technol. Water Treat., 2001, 27(2): 70 (许文林, 王雅琼, 高明国. 功率超声在有机废水处理中的应用[J]. 水处理技术, 2001, 27(2): 70)
[53] Trabelsi F, A?t-Lyazidi H, Ratsimba B, et al. Oxidation of phenol in wastewater by sonoelectrochemistry[J]. Chem. Eng. Sci., 1996, 51(10): 1857
[54] Zhao G H, Gao J X, Shen S H, et al. Ultrasound enhanced electrochemical oxidation of phenol and phthalic acid on boron-doped diamond electrode[J]. J. Hazard. Mater., 2009, 172(2/3): 1076
[1] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[2] WANG Tingyong, DONG Ruyi, XU Shi, WANG Hui. Electrochemical Properties of Graphene Modified Mixed Metal Oxide Anodes of Ti/IrTaSnSb-G in NaCl Solutions at Low Temperature[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[3] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[4] Jianfeng WEI, Hongtian FU, Tingyong WANG, Shi XU, Hui WANG, Haitao WANG. Effect of Sintering Temperature on Properties of Graphene-containing Ti/IrTaSnSb-G Metal Oxide Anodes[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[5] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[6] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. 中国腐蚀与防护学报, 2015, 35(1): 69-74.
[7] SONG Qin,,WU Junwei,,ZHANG Hui,,DU Cuiwei. Performance of Ti-based Dimensionally Stable Anode for Chromium Plating Application[J]. 中国腐蚀与防护学报, 2013, 33(6): 507-514.
[8] XU Hongyan,LI Zhiyong. Galvanic Corrosion of AZ91D Magnesium Alloy[J]. 中国腐蚀与防护学报, 2013, 33(4): 298-305.
[9] HOU Juncai, LIANG Guojun, QIAO Jinhua, ZHANG Qiumei. LOW Mn CONTENT MAGNISIUM SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(5): 403-406.
[10] HU Shengnan, ZHANG Tao, SHAO Yawei, MENG Guozhe, WANG Fuhui. EFFECT OF CYCLIC HYDROSTATIC PRESSURE ON SACRIFICIAL ANODE CATHODIC PROTECTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 241-246.
[11] HUANG Yanbin, SONG Gaowei, LIU Xuebin1 DING Huadong, YAN Yonggui, SHAO Xinhai. CORROSION PROTECTION OF Al-Zn-In-Mg-Ga-Mn ALUMINOUS SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[12] HOU Juncai, ZHANG Qiumei. CURRENT STATUS OF HIGH POTENTIAL MAGNESIUM SACRIFICIAL ANODES[J]. 中国腐蚀与防护学报, 2011, 31(2): 81-85.
[13] GUO Haiyan, ZHU Junqiu, SHAO Yanqun, TANG Dian. ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED[J]. 中国腐蚀与防护学报, 2010, 30(6): 449-452.
[14] MA Li, LI Weili, ZENG Hongjie, YAN Yonggui,HOU Baorong. LOW DRIVING VOLTAGE Al-Ga SACRIFICIAL ANODE AND ITS ACTIVATION MECHANISM[J]. 中国腐蚀与防护学报, 2010, 30(4): 329-332.
[15] LIANG Shuquan, ZHANG Yong, GUAN Dikai, TAN Xiaoping, TANG Yan, MAO Zhiwei. EFFECT OF ROLLING TEMPERATURE ON MICROSTRUCTURE AND PERFORMANCES OF Al-Mg-Sn-Bi-Ga-In ALLOY ANODE[J]. 中国腐蚀与防护学报, 2010, 30(4): 295-299.
No Suggested Reading articles found!