Please wait a minute...
J Chin Soc Corr Pro  1997, Vol. 17 Issue (1): 1-6    DOI:
Current Issue | Archive | Adv Search |
SEAWATER-CORROSION-INDUCED INTERGRANULAR PRECIPITATION IN Cu-Ni ALLOY
LIN Leyun LIU Shaofeng ZHU Xiaolong (Beijing Genaral Research Institute for Non-Ferrous Metals)
Download:  PDF(4004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Precipitation at grain boundaries of Cu-Ni alloy semirigid tubes exposed to seawater took place along with corrosion peeling of the surface oxide film, and the alloy's intergranular corrosion sensitivity increased significantly as a result of the precipitation process. According to TEM observation, the precipitates were product of spinodal decomposition and possessed diffraction pattern of alternate bright/dark strips with widths less than 50nm. The presence of precipitates caused intergranular brittle fracture of the material when tensile test was conducted. Its tensile strength slightly increased but the corrosion resistance of the tube was considerably impaired. The precipitation could be attributed to the change of stress condition in the material. The diffusion of alloy elements along grain boundaries towards surface film resulted in coarsening of the precipitates.
Key words:  Cu-Ni alloy      Seawater exposure      Intergranular corrosion      Intergranular precipitation      Strain induced      Nucleation and coarsening     
Received:  25 February 1997     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

LIN Leyun LIU Shaofeng ZHU Xiaolong (Beijing Genaral Research Institute for Non-Ferrous Metals). SEAWATER-CORROSION-INDUCED INTERGRANULAR PRECIPITATION IN Cu-Ni ALLOY. J Chin Soc Corr Pro, 1997, 17(1): 1-6.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y1997/V17/I1/1

1 Livak B J, Thomas G. Acta Met., 1970, 19:497
2 Butler E P, Thomas G. Acta Met., 1970, 18:347
3 Richter F, Pepperhoff W. Z. Metallk., 1983, 74(8): 500
4 Drolenga L J P, Ijsseling F P, Kolster B H. Werk. Korro., 1983, 34:167
5 Lennox T J Jr., Peterson M H, Groover R E. M. P., 1971, 10(7): 31
6 严宇民,林乐耘,朱小龙.中国腐蚀与防护学报,1994,14(1):59
7 米谷茂.残余应力的产生和对策,北京:机械工业出版社,1983
8 Khachaturyan A G. Theory of structural transformations in solids, John Wiley & Sons. Inc. 1983
9 Lopez H V M, Sano N, Sakura T, Hirano K. Act. Metall. Mater., 1993, 41(1): 265
10 余宗森,田中卓.金属物理,北京:冶金工业出版社,1982
11 Efird K D.Corr.,1975,31(3):77
12 林乐耘,罗德清.稀有金属,1993,17(4):275
13 刘玉清,刘锦岩.高温合金晶界间隙相,北京:冶金工业出版社,1990
[1] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[2] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[3] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[4] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[5] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[6] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[7] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[8] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[9] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[10] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[11] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[12] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[13] LI Chaoxing; LI Jinfeng; BIRBILIS Nick; JIA Zhiqiang; ZHENG Ziqiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
[14] . EIS CHARACTERISTICS OF 304 STAINLESS STEEL DURING INTERGRANULAR CORROSION[J]. 中国腐蚀与防护学报, 2007, 27(2): 74-79 .
[15] ;. INTERGRANULAR CORROSION OF 18-8 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2007, 27(2): 124-128 .
No Suggested Reading articles found!