Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1425-1432    DOI: 10.11902/1005.4537.2024.332
Current Issue | Archive | Adv Search |
Numerical Simulation of Erosion Wear on Non-circular Elbows
YAN Chongchong1,2, XIE Guangming1,2, HUA Jian1,2(), ZENG Yun1,2, ZHOU Sizhu1,2, YU Zekun1,2
1 School of Mechanical Engineering, Yangtze University, Jingzhou 434023, China
2 Mechanical Structures Strength and Vibration Research Institute, Yangtze University, Jingzhou 434023, China
Cite this article: 

YAN Chongchong, XIE Guangming, HUA Jian, ZENG Yun, ZHOU Sizhu, YU Zekun. Numerical Simulation of Erosion Wear on Non-circular Elbows. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1425-1432.

Download:  HTML  PDF(9375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, a non-circular elbow is proposed, aiming to reduce the erosion of ordinary elbow. Based on the theory of gas-solid two-phase flow, the flow field of the non-circular elbow was analyzed using Fluent software, and the non-circular elbow with better erosion resistance was optimized and the effect of flow velocity, mass concentration and particle diameter on the erosion of the elbow was studied. The results show that: the non-circular elbows are resistant to erosion when their long half axis 1(b) is located in ranges of 5.0-10.0 and 20.0-37.5, while the best erosion resistance for that with b of 30.0 with an enhancement of 17.71% in contrast to the ordinary elbow. The maximum erosion rate of non-circular elbow and ordinary elbow increases with the increase of three factors, among which the flow rate has the greatest influence. Regardless of the value of the three factors, the maximum erosion rate of non-circular elbow with b equal to 30.0, 22.5, 35.0, 32.5 and 27.5 is always smaller than that of ordinary elbow. The difference between the maximum erosion rate of the ordinary elbow and the non-circular elbow with b equal to 30.0 increases with the increase of the three factors. The results of the study can provide new ideas for the structural design and improvement of the elbow.

Key words:  elbow      gas-solid two-phase flow      erosive wear      structural optimization      erosion resistance     
Received:  10 October 2024      32134.14.1005.4537.2024.332
ZTFLH:  TH117.1  
Fund: National Natural Science Foundation of China(52174018);National Science and Technology Major Project(2016ZX05038-001-LH002)
Corresponding Authors:  HUA Jian, E-mail: huajian5410@yangtzeu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.332     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1425

a / mmb / mmc / mm
250.050.0
252.547.5
255.045.0
257.542.5
2510.040.0
2512.537.5
2515.035.0
2517.532.5
2520.030.0
2522.527.5
2525.025.0
2527.522.5
2530.020.0
2532.517.5
2535.015.0
2537.512.5
2540.010.0
2542.57.5
2545.05.0
2547.52.5
2550.00.0
Table 1  Values of b and c in non-circular elbows cross-section
Fig.1  Cross-sectional shapes of non-circular elbows corresponding to the different values of b
Fig.2  Schematic structure of non-circular elbow
Fig.3  Grid independence verification
Fig.4  Numerical simulation comparison cloud map: (a) simulated values in this paper, (b) literature simulation values
Maximum erosion rate / kg·m-2·s-1Error / %
Experimental valueSimulation value
2.92 × 10-33.09 × 10-35.82%
2.59 × 10-32.75 × 10-36.18%
Table 2  Comparison of experimental values and numerical simulation values
Fig.5  Pressure (a), velocity (b) cloud maps and flow diagram (c)
Fig.6  Maximum erosion rate as a function of b
Fig.7  Cloud maps of erosion distribution at different b values
Fig.8  Particle trajectories at different b values
Fig.9  Relationships between maximum erosion rate and flow velocity under different b values
Fig.10  Relationships between maximum erosion rate and mass concentration under different b values
Fig.11  Relationships between maximum erosion rate and particle diameter under different b values
[1] Li H Y, Liu H, Wang G Y, et al. Review on erosion-wear and protection of heat exchange surface in power station boilers [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 957
李海燕, 刘 欢, 王阁义 等. 锅炉受热面的冲蚀磨损与防护综述 [J]. 中国腐蚀与防护学报, 2023, 43: 957
doi: 10.11902/1005.4537.2022.282
[2] Zhang J, Zhang H, Chen X H, et al. Gas-solid erosion wear characteristics of elbow pipe with corrosion defects [J]. J. Press. Vessel Technol., 2021, 143: 051501
[3] Li S, Liu Y, Yao F X, et al. Analysis on erosion characteristics of liquid-solid two phase flow for key structure of new type backflow manifold [J]. Chin. Hydraul. Pneum., 2024, 48(3): 51
李 申, 刘 洋, 姚方旭 等. 新型返排管汇关键结构液固两相流冲蚀特性分析 [J]. 液压与气动, 2024, 48(3): 51
[4] Yang X Y, Guan L, Li Y, et al. Numerical simulation and experimental study on erosion-corrosion of square elbow based on orthogonal test [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 979
杨湘愚, 关 蕾, 李 雨 等. 基于正交试验的90°弯管冲刷腐蚀数值模拟及实验研究 [J]. 中国腐蚀与防护学报, 2022, 42: 979
doi: 10.11902/1005.4537.2021.325
[5] Dong Z L, Ruan C, Bai L Q, et al. The simulation analysis of erosion of 90° elbow [J]. Mod. Mach. Tool Autom. Manuf. Technol., 2021, (9): 157
董争亮, 阮 超, 白立强 等. 90°弯管冲蚀磨损仿真分析 [J]. 组合机床与自动化加工技术, 2021, (9): 157
doi: 10.13462/j.cnki.mmtamt.2021.09.036
[6] Zou Y M, Qiu Z G, Huang C J, et al. Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray [J]. Surf. Coat. Technol., 2022, 434: 128205
[7] Bobzin K, Brögelmann T, Kalscheuer C, et al. Post-annealing of (Ti,Al,Si)N coatings deposited by high speed physical vapor deposition (HS-PVD) [J]. Surf. Coat. Technol., 2019, 375: 752
[8] Huang Y Q, Wang M C, Zhang L, et al. Study on particle flow characteristics of asymmetric spherical elbow [J]. Comput. Simul., 2023, 40: 236
黄钰棋, 王沐晨, 张 林 等. 非对称球形弯头内颗粒流动特性研究 [J]. 计算机仿真, 2023, 40: 236
[9] Li R, Sun Z Q, Li A J, et al. Numerical analysis of the erosion characteristics of hemispherical protrusion elbow [J]. Surf. Technol., 2021, 50(9): 215
李 睿, 孙治谦, 李安俊 等. 半球形突起弯管冲蚀特性数值研究 [J]. 表面技术, 2021, 50(9): 215
[10] Xiao F. Erosion behavior of elbow in natural gas pipe based on CFD-DEM model [D]. Chengdu: Southwest Petroleum University, 2020
肖 飞. 基于CFD-DEM模型的采输气管弯头冲蚀行为研究 [D]. 成都: 西南石油大学, 2020
[11] Mo L, Wang J, Guo Z X, et al. Study on erosion mechanism of special-shaped pipe bend with elliptical section [J]. China Petrol. Mach., 2021, 49(10): 129
莫 丽, 王 玖, 郭振兴 等. 椭圆截面异型管道弯头冲蚀机理研究 [J]. 石油机械, 2021, 49(10): 129
[12] Parsi M, Najmi K, Najafifard F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications [J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
[13] Grant G, Tabakoff W. Erosion prediction in turbomachinery resulting from environmental solid particles [J]. J. Aircr., 1975, 12(5): 471
[14] Wang J, Li C J, Wu X. Study on gas-liquid-solid erosion wear of elbow in shale gas gathering pipeline [J]. China Petrol. Mach., 2022, 50(9): 137
王 静, 李长俊, 吴 瑕. 页岩气集输管道弯头气液固三相冲蚀磨损特性研究 [J]. 石油机械, 2022, 50(9): 137
[15] Guo Z H, Zhang J, Li H. Optimal design for anti-erosion of pneumatic conveying elbow with rib structure [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 525
郭姿含, 张 军, 李 晖. 具有肋条结构的气力输送弯管抗冲蚀优化设计 [J]. 中国腐蚀与防护学报, 2023, 43: 525
doi: 10.11902/1005.4537.2022.231
[16] Bourgoyne Jr A T. Experimental study of erosion in diverter systems due to sand production [A]. SPE/IADC Drilling Conference and Exhibition [C]. New Orleans, Louisiana, 1989
[17] Zhou L, Zhang H, Chen W K, et al. Analysis on erosion wear effect of fracturing manifold elbow in shale gas [J]. J. Saf. Sci. Technol., 2020, 16(10): 53
周 兰, 张 红, 陈文康 等. 页岩气压裂管汇弯头的冲蚀磨损影响分析 [J]. 中国安全生产科学技术, 2020, 16(10): 53
[18] Gao K G, Yan K L, Sun S G, et al. Influence of hydraulic fracturing working conditions on the erosion behavior of movable elbows [J]. Chem. Eng. Oil Gas, 2023, 52(6): 85
高凯歌, 闫柯乐, 孙少光 等. 水力压裂工况对活动弯头冲蚀行为的影响 [J]. 石油与天然气化工, 2023, 52(6): 85
[19] Kumar Y, Kaushal D R. Pipe bend erosion CFD modeling for two-phase liquid-solid slurry [J]. Mater. Today Proc., 2023, 82: 53
[1] ZHENG Zilong, SUN Haijing, XUE Weihai, CHEN Guoliang, ZHOU Xin, WANG Jinjun, DUAN Deli, SUN Jie. Effects and Damage Mechanisms of Polytetrafluoroethylene on Wear and Rain Erosion Resistance of Polyurethane Coatings for Wind Turbine Blades[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.
[2] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[3] GUO Zihan, ZHANG Jun, LI Hui. Optimal Design for Anti-erosion of Pneumatic Conveying Elbow with Rib Structure[J]. 中国腐蚀与防护学报, 2023, 43(3): 525-534.
[4] YANG Xiangyu, GUAN Lei, LI Yu, ZHANG Yongkang, WANG Guan, YAN Dejun. Numerical Simulation and Experimental Study on Erosion-corrosion of Square Elbow Based on Orthogonal Test[J]. 中国腐蚀与防护学报, 2022, 42(6): 979-987.
[5] HU Zongwu, LIU Jianguo, XING Rui, YIN Fabo. Erosion-corrosion Behavior of 90o Horizontal Elbow in Single Phase Flow[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
No Suggested Reading articles found!