|
|
An Electrochemical Noise Signal Recognition Method for Corrosion Monitoring |
SHEN Zhiyuan1,2, SHAN Guangbin1,2, CHEN Mindong1,2( ), LIU Yuanshuang1,2 |
1 State Key Laboratory of Chemical Safety, Qingdao 266104, China 2 SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China |
|
Cite this article:
SHEN Zhiyuan, SHAN Guangbin, CHEN Mindong, LIU Yuanshuang. An Electrochemical Noise Signal Recognition Method for Corrosion Monitoring. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1433-1440.
|
Abstract An electrochemical noise signal recognition network for corrosion monitoring was proposed in order to realize the automatic and accurate analysis of electrochemical noise signals collected in real time. The maximum pooling operation method was adopted to smooth the signal while the details and trend features of the signal are preserved, and the end-to-end training is realized by using a network module design. Based on residual structures and spatial pyramid pooling structures, a feature extraction module was designed to enhance the network's ability to characterize the key features. The model was trained and tested via 5-fold cross-validation based on the experimentally acquired electrochemical noise signals. The results show that the proposed model achieved an overall accuracy and F1 score of 0.9463 and 0.9282, respectively, demonstrating that neural networks can be used to accurately identify electrochemical noise signals.
|
Received: 12 October 2024
32134.14.1005.4537.2024.336
|
|
Fund: National Key Research and Development Program of China(2022YFC3004502) |
Corresponding Authors:
CHEN Mindong, E-mail: chenmd.qday@sinopec.com
|
[1] |
Zhang Z, Li X F, Zhao Z Y, et al. In-situ monitoring of pitting corrosion of Q235 carbon steel by electrochemical noise: Wavelet and recurrence quantification analysis [J]. J. Electroanal. Chem., 2020, 879: 114776
|
[2] |
Zhang H F, Wu Z Q, Chen Y, et al. Real-time monitoring of the corrosion behaviour of the 304SS in HCl solution using BPNN with joint image recognition and electrochemical noise [J]. Corros. Sci., 2024, 228: 111779
|
[3] |
Jiao Y B, Zhang D P, Yu J, et al. Early identification of stress corrosion cracking of P110 low alloy steel in downhole fluid by electrochemical noise measurement [J]. Corros. Eng. Sci. Technol., 2021, 56: 230
|
[4] |
Shi P F, Hu L Y, Duan G Q, et al. Research and prospect of corrosion monitoring techniques [J]. Total. Corros. Control, 2023, 37(10): 23
|
|
石鹏飞, 胡凌越, 段国庆 等. 腐蚀监测技术研究现状与展望 [J]. 全面腐蚀控制, 2023, 37(10): 23
|
[5] |
Han L, Zhang Y L, Liu X H, et al. The application of electrochemical noise technique on refinery technique on refinery [J]. Safety Health Environ., 2015, 15(5): 50
|
|
韩 磊, 张艳玲, 刘小辉 等. 电化学噪声技术在炼油厂腐蚀监测中的应用 [J]. 安全、健康和环境, 2015, 15(5): 50
|
[6] |
Zhou M X, Wu J, Fan Z B, et al. Current situation and prospect of on-line monitoring technology for atmospheric corrosion testing of metallic materials [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 38
|
|
周梦鑫, 吴 军, 樊志彬 等. 大气腐蚀在线监测技术研究现状与展望 [J]. 中国腐蚀与防护学报, 2023, 43: 38
doi: 10.11902/1005.4537.2022.027
|
[7] |
Sun Z J, Xue L, Xu Y M, et al. Overview of deep learning [J]. Appl. Res. Comput., 2012, 29: 2806
|
|
孙志军, 薛 磊, 许阳明 等. 深度学习研究综述 [J]. 计算机应用研究, 2012, 29: 2806
|
[8] |
Hu Q F, Zhang T, Chen S H, et al. An instantaneous corrosion monitoring technique based on combining modified electrochemical noise and artificial neural network for determination of corrosion type and 2014 aluminium alloy corrosion rate in NaCl and Ce(NO3)3 solutions [J]. Int. J. Electrochem. Sci., 2022, 17: 220213
|
[9] |
Nazarnezhad-Bajestani M, Neshati J, Siadati M H. Determination of SS321 pitting stage in FeCl3 solution based on electrochemical noise measurement data using artificial neural network [J]. J. Electroanal. Chem., 2019, 845: 31
doi: 10.1016/j.jelechem.2019.05.036
|
[10] |
Calabrese L, Galeano M, Proverbio E, et al. Topological neural network of combined AE and EN signals for assessment of SCC damage [J]. Nondestruct. Test. Eval., 2020, 35(1): 98
|
[11] |
Liu W. Asymmetric surface configuration for electrochemical noise measurement on stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1151
|
|
刘 微. 测量不锈钢电化学噪声的非对称表面方法 [J]. 中国腐蚀与防护学报, 2023, 43: 1151
|
[12] |
An P L, Liang P, Ren J M, et al. Characteristics on electrochemical noise of pitting corrosion for high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 26
|
|
安朋亮, 梁 平, 任建民 等. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2018, 38: 26
doi: 10.11902/1005.4537.2016.242
|
[13] |
Hu H H, Wang G, Deng P C, et al. Electrochemical noise characteristics of 304 stainless steel pitting based on MATLAB [J]. J. Guangdong Ocean Univ., 2019, 39(4): 89
|
|
胡欢欢, 王 贵, 邓培昌 等. 基于MATLAB的304不锈钢点蚀行为电化学噪声特征 [J]. 广东海洋大学学报, 2019, 39(4): 89
|
[14] |
Li Z G, Peng D H, Pu J W, et al. Pitting corrosion of stainless steel in chloride-containing potassium sulfate solution based on electrochemical noise technique [J]. Mater. Prot., 2018, 51(9): 122
|
|
李志刚, 彭东辉, 浦静雯. 基于电化学噪声研究不锈钢在含氯硫酸钾溶液中的点蚀特征 [J]. 材料保护, 2018, 51(9): 122
|
[15] |
Deng J H, Wang G, Hu J Z, et al. Pitting behavior of stainless steel in simulated marine atmosphere based on electrochemical noise [J]. J. Electrochem., 2020, 26: 298
|
|
邓俊豪, 王 贵, 胡杰珍 等. 基于电化学噪声研究模拟海洋大气环境下304不锈钢的点蚀行为 [J]. 电化学, 2020, 26: 298
doi: 10.13208/j.electrochem.190415
|
[16] |
Li Z G, Peng D H, Pu J W, et al. Application of electrochemical noise technology to the study of pitting behavior of 2205 steel [J]. Corros. Prot., 2018, 39: 11
|
|
李志刚, 彭东辉, 浦静雯 等. 电化学噪声技术在2205钢点蚀行为研究中的应用 [J]. 腐蚀与防护, 2018, 39: 11
|
[17] |
Deng J H. Research and application of electrochemical noise technology in atmospheric pitting monitoring of stainless steel [D]. Zhanjiang: Guangdong Ocean University, 2020
|
|
邓俊豪. 电化学噪声技术在不锈钢大气点蚀监测中的研究与应用 [D]. 湛江: 广东海洋大学, 2020
|
[18] |
Hu H H, Deng P C, Hu J Z, et al. Monitoring method of carbon steel atmosphere corrosion behavior based on electrochemical noise technology [J]. Eq. Envir. Eng., 2017, 14(9): 68
|
|
胡欢欢, 邓培昌, 胡杰珍 等. 基于电化学噪声技术的碳钢大气腐蚀行为监测方法 [J]. 装备环境工程, 2017, 14(9): 68
|
[19] |
Wang F P, Jiang X Y, Zhang H. The relationship between the electrochemical noise spectrogram and the surface state of AZ91D magnesium alloy in sodium chloride solution [J]. J. Liaoning Norm. Univ. (Nat. Sci. Ed.), 2015, 38: 497
|
|
王凤平, 蒋新瑜, 张 航. AZ91D镁合金在NaCl溶液中电化学噪声谱与表面状态关系 [J]. 辽宁师范大学学报(自然科学版), 2015, 38: 497
|
[20] |
Zhou F Y, Jin L P, Dong J. Review of convolutional neural network [J]. Chin. J. Comput., 2017, 40: 1229
|
|
周飞燕, 金林鹏, 董 军. 卷积神经网络研究综述 [J]. 计算机学报, 2017, 40: 1229
|
[21] |
Liu B Y. Research on signal peak preservation smoothing algorithm based on segmented classification [D]. Nanjing: Nanjing University of Information Science & Technology, 2021
|
|
刘宝莹. 基于分段分类的信号保峰平滑算法研究 [D]. 南京: 南京信息工程大学, 2021
|
[22] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [A]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [C]. Vegas, 2016: 770
|
[23] |
Huang W B, Chen R W, Yuan T T. Compression of UAV object detection model based on improved YOLOv3-SPP [J]. Comput. Eng. Appl., 2021, 57(21): 165
doi: 10.3778/j.issn.1002-8331.2007-0230
|
|
黄文斌, 陈仁文, 袁婷婷. 改进YOLOv3-SPP的无人机目标检测模型压缩方案 [J]. 计算机工程与应用, 2021, 57(21): 165
doi: 10.3778/j.issn.1002-8331.2007-0230
|
[24] |
Fu H T, Wang P, Li X Y, et al. Lightweight network model for moving object recognition [J]. J. Xi'an Jiaotong Univ., 2021, 55(7): 124
|
|
符惠桐, 王 鹏, 李晓艳 等. 面向移动目标识别的轻量化网络模型 [J]. 西安交通大学学报, 2021, 55(7): 124
|
[25] |
Zhou Z H. Machine Learning [M]. Beijing: Tsinghua University Press, 2016: 28
|
|
周志华. 机器学习 [M]. 北京: 清华大学出版社, 2016: 28
|
[26] |
Carrington A M, Manuel D G, Fieguth P W, et al. Deep ROC analysis and AUC as balanced average accuracy, for improved classifier selection, audit and explanation [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2023, 45: 329
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|