|
|
Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring |
ZHANG Hao1, CHEN Junhang1, HU Weifeng2, ZHANG Xin3, DONG Chaofang1, XIAO Kui1( ) |
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Suryee Science & Technology Co., Ltd., Beijing 100083, China 3 Testing Center of University of Science and Technology Beijing Co., Ltd., Beijing 100083, China |
|
Cite this article:
ZHANG Hao, CHEN Junhang, HU Weifeng, ZHANG Xin, DONG Chaofang, XIAO Kui. Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1339-1344.
|
Abstract The corrosion behavior of Cu-Zn probe, used for atmospheric corrosion monitoring (ACM), was studied at different temperatures via salt spray testing with NaCl solutions, NaHSO3 solutions, and NaCl and NaHSO3 mixed solutions of varying concentration respectively. Correspondingly, the variation of the integrated charge quantity of Cu-Zn probes was also acquired with the testing conditions. The results indicate that the Cu-Zn probe is highly sensitive to the variation of test temperature, NaCl concentration, NaHSO3 concentration, and the concentration of the mixed ones, exhibiting significant sensitivity. On the basis of comprehensive consideration of various factors, the order of corrosion impact for Cu-Zn probes is as follows: temperature < NaCl concentration < NaHSO3 concentration < concentration of NaCl and NaHSO3 mixture.
|
Received: 12 December 2023
32134.14.1005.4537.2023.388
|
|
Fund: National Defense and Science and Technology Industrial Technology Basic Research Projects(JSHS2020209B001) |
Corresponding Authors:
XIAO Kui, E-mail: xiaokui@ustb.edu.cn
|
1 |
Ke W. China corrosion investigation report [J]. Corros. Sci. Prot. Technol., 2004, (1): 62
|
|
柯 伟. 中国腐蚀调查报告 [J]. 腐蚀科学与防护技术, 2004, (1): 62
|
2 |
Zhang Q F, Liu B J, Zhong H F. Development trend of hot-dip galvanizing technology [J]. J. Iron Steel Res, 2002, 14(4): 65
|
|
张启富, 刘邦津, 仲海峰. 热镀锌技术的最新进展 [J]. 钢铁研究学报, 2002, 14(4): 65
|
3 |
Qu Q, Yan C W, Cao C N. Progress in experimental methods for atmospheric corrosion of metals [J]. Corros. Sci. Prot. Technol., 2003, 15: 216
|
|
屈 庆, 严川伟, 曹楚南. 金属大气腐蚀实验技术进展 [J]. 腐蚀科学与防护技术, 2003, 15: 216
|
4 |
Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 2
|
|
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25(1): 1
|
5 |
Ye D, Zhao D W, Li J, et al. Study on the effects of air pollution on corrosion of carbon steel [J]. J. Chongqing Jianzhu Univ., 2005, 27(1): 80
|
|
叶 堤, 赵大为, 李 娟 等. 大气污染对碳钢的腐蚀影响研究 [J]. 重庆建筑大学学报, 2005, 27(1): 80
|
6 |
Li X L. Reviews on investigation networks for atomspheric corrosion and suggestions on coming development [J]. Mater Prot, 2000, 33(1): 20
|
|
李兴濂. 我国大气腐蚀网站试验研究回顾及发展建议 [J]. 材料保护, 2000, 33(1): 20
|
7 |
Zhang X Y, Han E H, Li H X. Estimation of the corrosion losses by the acidic Rain in China [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 316
|
|
张学元, 韩恩厚, 李洪锡. 中国的酸雨对材料腐蚀的经济损失估算 [J]. 中国腐蚀与防护学报, 2002, 22: 316
|
8 |
Jiang J X, Zhang P F, Gao M T. Metal Corrosion [M]. Beijing: National Defense Industry Press, 1986
|
|
蒋金勋, 张佩芬, 高满同. 金属腐蚀学 [M]. 北京: 国防工业出版社, 1986
|
9 |
Saijo Y, Ueki M, Watanabe H, et al. Monitoring technology for automobile corrosive environments [J]. SAE Int. J. Mater. Manf., 2015, 8: 534
|
10 |
Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
|
11 |
Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
|
12 |
Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
|
13 |
Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferr. Met. Soc. China, 2007, 17: 326
|
14 |
Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor [J]. J. Mater. Eng. Perform., 2020, 29: 5840
|
15 |
Shinohara T, Motoda S I, Oshikawa W. Evaluation of corrosivity in atmospheric environment by ACM (atmospheric corrosion monitor) type corrosion sensor [J]. Mater. Sci. Forum, 2005, 475-479: 61
|
16 |
Cao X L, Deng H D, Lan W, et al. Electrochemical investigation on atmospheric corrosion of carbon steel under different environmental parameters [J]. Anti-Corros. Method Mater., 2013, 60: 199
|
17 |
Wang X M, Li X G, Tian X L. Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor [J]. Int. J. Electrochem. Sci., 2015, 10: 8361
|
18 |
de la Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
|
19 |
Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
|
20 |
Yin Q, Wang Z Y, Pan C. Initial corrosion behavior of pure zinc in simulated tropical marine atmosphere [J]. T. Nonferr. Met. Soc. China, 2018, 28: 2582
|
21 |
Yin Q, Wang Z Y, Liu M R, et al. Synergistic effect of NaCl and SO2 on the initial atmospheric corrosion of Zinc under wet-dry cyclic conditions [J]. Acta Metall. Sin. Engl. Lett., 2019, 32: 780
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|