Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1339-1344    DOI: 10.11902/1005.4537.2023.388
Current Issue | Archive | Adv Search |
Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring
ZHANG Hao1, CHEN Junhang1, HU Weifeng2, ZHANG Xin3, DONG Chaofang1, XIAO Kui1()
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Suryee Science & Technology Co., Ltd., Beijing 100083, China
3 Testing Center of University of Science and Technology Beijing Co., Ltd., Beijing 100083, China
Cite this article: 

ZHANG Hao, CHEN Junhang, HU Weifeng, ZHANG Xin, DONG Chaofang, XIAO Kui. Environmental Factor Sensitivity and Corrosion Effect of Cu-Zn Probe for Atmospheric Corrosion Monitoring. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1339-1344.

Download:  HTML  PDF(8756KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Cu-Zn probe, used for atmospheric corrosion monitoring (ACM), was studied at different temperatures via salt spray testing with NaCl solutions, NaHSO3 solutions, and NaCl and NaHSO3 mixed solutions of varying concentration respectively. Correspondingly, the variation of the integrated charge quantity of Cu-Zn probes was also acquired with the testing conditions. The results indicate that the Cu-Zn probe is highly sensitive to the variation of test temperature, NaCl concentration, NaHSO3 concentration, and the concentration of the mixed ones, exhibiting significant sensitivity. On the basis of comprehensive consideration of various factors, the order of corrosion impact for Cu-Zn probes is as follows: temperature < NaCl concentration < NaHSO3 concentration < concentration of NaCl and NaHSO3 mixture.

Key words:  ACM technology      Cu-Zn probe      salt spray test      integrated charge quantity     
Received:  12 December 2023      32134.14.1005.4537.2023.388
ZTFLH:  TG174  
Fund: National Defense and Science and Technology Industrial Technology Basic Research Projects(JSHS2020209B001)
Corresponding Authors:  XIAO Kui, E-mail: xiaokui@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.388     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1339

Fig. 1  Schematic diagram of ACM corrosion probe: (a) comprehensive diagram, (b) half section view
Fig.2  Macro morphologies of Cu-Zn corrosion probe: (a) blank group, (b) 35 ℃, (c) 40 ℃, (d) 45 ℃
Fig.3  Relationship between ACM integrated charge of Cu-Zn probe and temperature
Fig.4  Macro morphologies of Cu-Zn corrosion probe in salt spray tests with different NaCl concentrations: (a) 0, (b) 1.0%, (c) 3.5%, (d) 5.0%, (e) 7.0%
Fig.5  Variation trend of ACM integrated charge of Cu-Zn corrosion probe with NaCl concentration
Fig.6  Macro morphologies of Cu-Zn corrosion probe in salt spray tests with different NaHSO3 concentrations: (a) 0, (b) 0.05%, (c) 0.10%, (d) 0.30%, (e) 0.50%
Fig.7  Relationship between ACM integrated charge of Cu-Zn corrosion probe and concentration of NaHSO3
Fig.8  Macro morphologies of Cu-Zn corrosion probe in salt spray tests with NaHSO3 concentration of 0.05% and NaCl concentration of 0 (a), 1.0% (b), 3.5% (c), 5.0% (d) and 7.0% (e)
Fig.9  Relationship between ACM integrated charge of Cu-Zn corrosion probe and variation of mixed concentration
1 Ke W. China corrosion investigation report [J]. Corros. Sci. Prot. Technol., 2004, (1): 62
柯 伟. 中国腐蚀调查报告 [J]. 腐蚀科学与防护技术, 2004, (1): 62
2 Zhang Q F, Liu B J, Zhong H F. Development trend of hot-dip galvanizing technology [J]. J. Iron Steel Res, 2002, 14(4): 65
张启富, 刘邦津, 仲海峰. 热镀锌技术的最新进展 [J]. 钢铁研究学报, 2002, 14(4): 65
3 Qu Q, Yan C W, Cao C N. Progress in experimental methods for atmospheric corrosion of metals [J]. Corros. Sci. Prot. Technol., 2003, 15: 216
屈 庆, 严川伟, 曹楚南. 金属大气腐蚀实验技术进展 [J]. 腐蚀科学与防护技术, 2003, 15: 216
4 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 2
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25(1): 1
5 Ye D, Zhao D W, Li J, et al. Study on the effects of air pollution on corrosion of carbon steel [J]. J. Chongqing Jianzhu Univ., 2005, 27(1): 80
叶 堤, 赵大为, 李 娟 等. 大气污染对碳钢的腐蚀影响研究 [J]. 重庆建筑大学学报, 2005, 27(1): 80
6 Li X L. Reviews on investigation networks for atomspheric corrosion and suggestions on coming development [J]. Mater Prot, 2000, 33(1): 20
李兴濂. 我国大气腐蚀网站试验研究回顾及发展建议 [J]. 材料保护, 2000, 33(1): 20
7 Zhang X Y, Han E H, Li H X. Estimation of the corrosion losses by the acidic Rain in China [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 316
张学元, 韩恩厚, 李洪锡. 中国的酸雨对材料腐蚀的经济损失估算 [J]. 中国腐蚀与防护学报, 2002, 22: 316
8 Jiang J X, Zhang P F, Gao M T. Metal Corrosion [M]. Beijing: National Defense Industry Press, 1986
蒋金勋, 张佩芬, 高满同. 金属腐蚀学 [M]. 北京: 国防工业出版社, 1986
9 Saijo Y, Ueki M, Watanabe H, et al. Monitoring technology for automobile corrosive environments [J]. SAE Int. J. Mater. Manf., 2015, 8: 534
10 Li X G, Zhang D W, Liu Z Y, et al. Materials science: share corrosion data [J]. Nature, 2015, 527: 441
11 Pei Z B, Zhang D W, Zhi Y J, et al. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning [J]. Corros. Sci., 2020, 170: 108697
12 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
13 Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferr. Met. Soc. China, 2007, 17: 326
14 Huang Y L, Yang D, Xu Y, et al. Field study of weather conditions affecting atmospheric corrosion by an automobile-carried atmospheric corrosion monitor sensor [J]. J. Mater. Eng. Perform., 2020, 29: 5840
15 Shinohara T, Motoda S I, Oshikawa W. Evaluation of corrosivity in atmospheric environment by ACM (atmospheric corrosion monitor) type corrosion sensor [J]. Mater. Sci. Forum, 2005, 475-479: 61
16 Cao X L, Deng H D, Lan W, et al. Electrochemical investigation on atmospheric corrosion of carbon steel under different environmental parameters [J]. Anti-Corros. Method Mater., 2013, 60: 199
17 Wang X M, Li X G, Tian X L. Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor [J]. Int. J. Electrochem. Sci., 2015, 10: 8361
18 de la Fuente D, Castaño J G, Morcillo M. Long-term atmospheric corrosion of zinc [J]. Corros. Sci., 2007, 49: 1420
19 Qiao C, Shen L F, Hao L, et al. Corrosion kinetics and patina evolution of galvanized steel in a simulated coastal-industrial atmosphere [J]. J. Mater. Sci. Technol., 2019, 35: 2345
doi: 10.1016/j.jmst.2019.05.039
20 Yin Q, Wang Z Y, Pan C. Initial corrosion behavior of pure zinc in simulated tropical marine atmosphere [J]. T. Nonferr. Met. Soc. China, 2018, 28: 2582
21 Yin Q, Wang Z Y, Liu M R, et al. Synergistic effect of NaCl and SO2 on the initial atmospheric corrosion of Zinc under wet-dry cyclic conditions [J]. Acta Metall. Sin. Engl. Lett., 2019, 32: 780
[1] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[2] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[3] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[4] Chao FENG, Bicao PENG, Yi XIE, Jun WANG, Minghuan LI, Tangqing WU, Fucheng YIN. Corrosion Behavior of T91 Steel by Salt Spray with 0.1%NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 583-589.
[5] BI Qiang, ZHANG Pingze, HUANG Jun, WEI Dongbo, LI Wei. MICROSTRUCTURE AND CORROSION RESISTANCE OF Ta MODIFIED LAYER FORMED BY DOUBLE GLOW PLASMA SURFACE METALLURGY[J]. 中国腐蚀与防护学报, 2012, 32(5): 364-368.
[6] LIN Jiyue, LIU Guangming,CHEN Gang. INFLUENCE OF DDS CONTENT ON THE PROPERTIES OF ORGANOSILICONE/SiO2 HYBRID COATINGS[J]. 中国腐蚀与防护学报, 2011, 31(2): 116-120.
[7] FU Ruidong, HE Miao, LUAN Guohong, DONG Chunlin,KANG Ju. CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
[8] CUI Jihong, CAI Jianping, JIA Chengchang. PITTING CORROSION OF HIGH STRENGTH ALUMINUM ALLOYS IN SALT SPRAY TEST[J]. 中国腐蚀与防护学报, 2010, 30(3): 197-202.
[9] LUAN Guohong, FU Ruidong, DONG Chunlin, HE Miao,KANG Ju. CORROSION BEHAVIORS OF FRICTION STIR WELDED JOINT OF 7075 ALUMINUM ALLOYS UNDER NATURAL SALT SPRAY[J]. 中国腐蚀与防护学报, 2010, 30(3): 236-240.
[10] LI Zhuang, XIA Ming, GUAN Penglai, GUO Xiangmin. ELECTROCHEMICAL CORROSION BEHAVIOR OF TRIP STEEL IN 3.5%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(3): 203-206.
[11] Bailing Jiang; Shufen Zhang; Guojian Wu. THE STUDY OF THE CORROSION RESISTANCEOF THE CERAMIC COATINGS FORMED BY MICRO-ARCOXIDATION ON THE Mg-BASE ALLOY[J]. 中国腐蚀与防护学报, 2002, 22(5): 300-303 .
No Suggested Reading articles found!