Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 700-706    DOI: 10.11902/1005.4537.2023.214
Current Issue | Archive | Adv Search |
Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential
DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting(), LI Jin, JIANG Yiming
Department of Materials Science, Fudan University, Shanghai 200438, China
Cite this article: 

DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 700-706.

Download:  HTML  PDF(14664KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In practical application, the selective oxidation of Ag3Sn in Sn-Ag-Cu (SAC) solder will take place to form pure Ag, resulting in the formation of Ag/Sn galvanic couple. As development of electronic devices tends to miniature while high performance, the solder joints decrease in size, the in-between gaps become narrower, these factors lead to the increase in the intensity of the local electric field around solder joints. As a consequence, the corrosion behavior of SAC solder may change. In this paper, the corrosion of Ag/Sn galvanic couple under different applied potentials was studied by open-circuit potential and potentiodynamic polarization test and bipolar electrochemistry test. The results show that the OCP of Sn was lower than that of Ag. At high applied potential, Sn suffered severe corrosion while the formation of AgCl inhibited the dissolution of Ag; at low applied potential, Sn suffered cathodic corrosion.

Key words:  bipolar electrochemistry      SAC solder      Ag corrosion      Sn corrosion      dendrite     
Received:  07 July 2023      32134.14.1005.4537.2023.214
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52071082);Natural Science Foundation of Shanghai(21ZR1406500)
Corresponding Authors:  SUN Yangting, E-mail: sunyangting@fudan.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.214     OR     https://www.jcscp.org/EN/Y2024/V44/I3/700

Fig.1  Schematic of bipolar electrochemistry test setup (a), top view (b) and side view (c) of bipolar electrode, ‘E’ represents the potential
Fig.2  OCP of Ag and Sn in 0.01 mol/L NaCl solution
Fig.3  Polarization curves of Ag and Sn in 0.01 mol/L NaCl solution
Fig.4  Optical image (a), SEM image (b), element distribution maps (c, d) and magnified views (e‒g) of Fig.4b, EDS results of points in Fig.4e-g (h‒j) of Ag after polarization in 0.01 mol/L NaCl solution
Fig.5  Optical image (a), SEM images (b, f), element distribution maps of Fig.5b (c‒e) and EDS result of points in Fig.5f (g, h) of Sn after polarization in 0.01 mol/L NaCl solution
Fig.6  SEM images and EDS results of the Ag (a1-a3) of zones 1, 2, and 3 in Fig.6a and Sn (b1-b3) of zones 1, 2, and 3 in Fig.6b after the BPE test for 10 min in 0.01 mol/L NaCl solution
1 Pecht M, Shibutani T, Wu L F. A reliability assessment guide for the transition planning to lead-free electronics for companies whose products are RoHS exempted or excluded [J]. Microelectron. Reliab., 2016, 62: 113
doi: 10.1016/j.microrel.2016.03.020
2 Tunthawiroon P, kanlayasiri K. Effects of Ag contents in Sn–xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1696
doi: 10.1016/S1003-6326(19)65076-4
3 Fazal M A, Liyana N K, Rubaiee S, et al. A critical review on performance, microstructure and corrosion resistance of Pb-free solders [J]. Measurement, 2019, 134: 897
doi: 10.1016/j.measurement.2018.12.051
4 Keller J, Baither D, Wilke U, et al. Mechanical properties of Pb-free SnAg solder joints [J]. Acta Mater., 2011, 59: 2731
doi: 10.1016/j.actamat.2011.01.012
5 Gharaibeh A, Felhősi I, Keresztes Z, et al. Electrochemical corrosion of SAC alloys: a review [J]. Metals, 2020, 10: 1276
doi: 10.3390/met10101276
6 Tian Y, Ren N, Zhao Z H, et al. Ag3Sn compounds coarsening behaviors in micro-joints [J]. Materials, 2018, 11: 2509
doi: 10.3390/ma11122509
7 Comizzoli R B, Frankenthal R P, Milner P C, et al. Corrosion of electronic materials and devices [J]. Science, 1986, 234: 340
pmid: 17834532
8 Yan Z, Xian A P. Pitting corrosion behavior of Sn-0.7Cu lead-free alloy in simulated marine atmospheric enviroment and the effect of trace Ga [J]. Acta Metall. Sin., 2011, 47: 1327
颜 忠, 冼爱平. 人工模拟海洋大气环境下Sn-0.7Cu无铅焊料的点蚀行为及微量Ga的影响 [J]. 金属学报, 2011, 47: 1327
9 Song F B, Lee S W R. Corrosion of Sn-Ag-Cu lead-free solders and the corresponding effects on board level solder joint reliability [A]. 56th Electronic Components and Technology Conference 2006 [C]. San Diego, 2006
10 Wang M N, Wang J Q, Feng H, et al. Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0Ag-0.5Cu solder under high-temperature and high-humidity condition [J]. Corros. Sci., 2012, 63: 20
doi: 10.1016/j.corsci.2012.05.006
11 Wang M N, Wang J Q, Ke W. Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder joints [J]. Microelectron. Reliab., 2017, 73: 69
doi: 10.1016/j.microrel.2017.04.017
12 Liao B K, Cen H Y, Chen Z Y, et al. Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers [J]. Corros. Sci., 2018, 143: 347
doi: 10.1016/j.corsci.2018.08.041
13 Chen G, Wang X H, Yang J, et al. Effect of micromorphology on corrosion and mechanical properties of SAC305 lead-free solders [J]. Microelectron. Reliab., 2020, 108: 113634
doi: 10.1016/j.microrel.2020.113634
14 Wang M N, Qiao C, Jiang X L, et al. Microstructure induced galvanic corrosion evolution of SAC305 solder alloys in simulated marine atmosphere [J]. J. Mater. Sci. Technol., 2020, 51: 40
doi: 10.1016/j.jmst.2020.03.024
15 Yi P, Dong C F, Xiao K, et al. Study on corrosion behavior of β-Sn and intermetallic compounds phases in SAC305 alloy by in-situ EC-AFM and first-principles calculation [J]. Corros. Sci., 2021, 181: 109244
doi: 10.1016/j.corsci.2021.109244
16 Qiao C, Sun X, Wang Y Z, et al. A perspective on effect by Ag addition to corrosion evolution of Pb-free Sn solder [J]. Mater. Lett., 2021, 297: 129935
doi: 10.1016/j.matlet.2021.129935
17 Zhong X K, Lu W J, Liao B K, et al. Evidence for Ag participating the electrochemical migration of 96.5Sn-3Ag-0.5Cu alloy [J]. Corros. Sci., 2019, 156: 10
doi: 10.1016/j.corsci.2019.05.004
18 Sun X. Structure and corrosion behavior of the oxide film formed on Sn-based Pb-free solder [D]. Shenyang: Shenyang Ligong University, 2022
孙 旭. 锡基无铅焊料表面氧化膜膜层结构及腐蚀性能表征 [D]. 沈阳: 沈阳理工大学, 2022
19 Xiao K, Zou S W, Dong C F, et al. Atmospheric Corrosion Behavior and Mechanism of Electronic Materials [M]. Beijing: Chemical Industry Press, 2020
肖 葵, 邹士文, 董超芳 等. 电子材料大气腐蚀行为与机理 [M]. 北京: 化学工业出版社, 2020
20 Teng L, Chen X. Research progress of galvanic corrosion in marine environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 531
滕 琳, 陈 旭. 海洋环境中金属电偶腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 531
21 Liu J Z, Xing S H, Qian Y, et al. Galvanic corrosion behavior of 20# steel/tin bronze couple in flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 127
刘近增, 邢少华, 钱 峣 等. 20#钢/锡青铜偶对在流动海水中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 127
doi: 10.11902/1005.4537.2022.001
22 Xing S H, Liu J Z, Bai S Y, et al. Influence of seawater flow speed on galvanic corrosion behavior of B10/B30 alloys coupling [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 391
邢少华, 刘近增, 白舒宇 等. 海水流速对B10/B30电偶腐蚀行为影响规律研究 [J]. 中国腐蚀与防护学报, 2023, 43: 391
doi: 10.11902/1005.4537.2022.109
23 Dai W, Liu Y Y, Huang N G, et al. Selective corrosion of β-Sn and intermetallic compounds in an Ag–Sn alloy at different potentials in NaCl and Na2SO4 solutions [J]. Corros. Sci., 2023, 212: 110958
doi: 10.1016/j.corsci.2022.110958
24 Munktell S, Tydén M, Högström J, et al. Bipolar electrochemistry for high-throughput corrosion screening [J]. Electrochem. Commun., 2013, 34: 274
doi: 10.1016/j.elecom.2013.07.011
25 Li D Z, Conway P P, Liu C Q. Corrosion characterization of tin-lead and lead free solders in 3.5wt.% NaCl solution [J]. Corros. Sci., 2008, 50: 995
doi: 10.1016/j.corsci.2007.11.025
26 Rosalbino F, Angelini E, Zanicchi G, et al. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution [J]. Electrochim. Acta, 2009, 54: 7231
doi: 10.1016/j.electacta.2009.07.030
27 Cao C N. Principle of Corrosion Electrochemistry [M]. 2nd ed. Beijing: Chemical Industry Press, 2004
曹楚南. 腐蚀电化学原理 [M]. 2版. 北京: 化学工业出版社, 2004
28 Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions [M]. 2d ed. Houston: National Association of Corrosion Engineers, 1974
29 Haynes W M. CRC Handbook of Chemistry and Physics [M]. 95th ed. Boca Raton: CRC Press, 2014
30 Alvarez P E, Ribotta S B, Folquer M E, et al. Potentiodynamic behaviour of tin in different buffer solutions [J]. Corros. Sci., 2002, 44: 49
doi: 10.1016/S0010-938X(01)00032-4
31 Bui Q V, Nam N D, Noh B I, et al. Effect of Ag addition on the corrosion properties of Sn-based solder alloys [J]. Mater. Corros., 2010, 61: 30
32 Minzari D, Jellesen M S, Møller P, et al. On the electrochemical migration mechanism of tin in electronics [J]. Corros. Sci., 2011, 53: 3366
doi: 10.1016/j.corsci.2011.06.015
[1] HUA Li, GUO Xingpeng, YANG Jiakuan. ELECTROCHEMICAL CORROSION BEHAVIOR AND DENDRITE GROWTH OF Sn-0.7Cu SOLDER ON FR-4 PRINTED CIRCUIT BOARD PLATED WITH Cu[J]. 中国腐蚀与防护学报, 2010, 30(6): 469-474.
[2] ;. Research on Corrosive Mechanism of Lead-Tin Based Alloy Cultural Relics of Warring States in Hubei Province[J]. 中国腐蚀与防护学报, 2007, 27(3): 162-166 .
No Suggested Reading articles found!