Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 497-504    DOI: 10.11902/1005.4537.2016.130
Orginal Article Current Issue | Archive | Adv Search |
Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy
Jingyong SUN1(),Qiushi LI1,Hongbo GUO2,Shengkai GONG2
1. School of Materials Science and Engneering, Beihang University, Beijing 100191, China
2. School of Energy and Power Engineering, Beihang University, Beijing 100191, China
Download:  HTML  PDF(6279KB) 
Export:  BibTeX | EndNote (RIS)      

The coatings applied on gas turbine blade of single crystal superalloy are required to have a high adhesive strength with the substrate. The interdiffusion between coatings and substrate alloys is concerned due to its impact on the microstructure stability of the superalloy substrates. In view of the importance of the interdiffusion behavior, Ni-Al coatings with 10.90%(mass fraction),14.30% and 17.60% Al respectively are prepared on the second generation single crystal superalloy René N5 by electron beam-physical vapor deposition (EB-PVD). Correspondingly, the coatings are composed of γ+γ ' two phases, γ ' single phase and γ '+β two phases, respectively. The effect of the interdiffusion between Ni-Al coatings and single crystal substrate on the microstructure stability of the superalloy substrate is investigated. It is found that the γ/γ ' coherent structure of the single crystal substrate is destroyed by inward diffusion of Al. However, the depth of the destroyed zone in the substrate has not positive correlation with Al concentration. For the coating with 14.30% Al, the interdiffusion induced damage of the substrate is most severe. The increasing of Al concentration in the Ni-Al coatings promotes the formation of TCP phase in the diffusion zone of the substrate.

Key words:  Ni-Al coating      EB-PVD      single crystal superalloy      interdiffusion     

Cite this article: 

Jingyong SUN,Qiushi LI,Hongbo GUO,Shengkai GONG. Effect of Interdiffusion Between Ni-Al Coating and Substrate on Microstructure Stability of Single Crystal Superalloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 497-504.

URL:     OR

EB-PVD target Ni Al
Ni25Al 86.09 13.91
Ni30Al 83.54 16.46
Ni35Al 80.16 19.84
Table 1  Compositions of EB-PVD target(mass fraction / %)
Content Cr Co Mo W Ta Re Hf Al Ni
Atomic fraction 8.12 7.68 0.94 1.64 2.33 0.97 0.05 13.86 Bal.
Mass fraction 7.00 7.50 1.50 5.00 7.00 3.00 0.15 6.20 Bal.
Table 2  Compositions of René N5 superalloy
Coating Atomic fraction / % Mass fraction / %
Ni Al Ni Al
R-25 78.98 21.02 89.10 10.90
R-30 73.37 26.63 85.70 14.30
R-35 68.28 31.72 82.40 17.60
Table 3  Compositions of three Ni-Al coatings
Fig.1  Phase compositions of three Ni-Al coatings initially deposited and annealed at 1000 ℃ for 100 h
Fig.2  Cross sections (a, c, e) and element distributions (b, d, f) of R-25 coating deposited initially (a, b) and annealed for 5 h (c, d) and 100 h (e, f)
Fig.3  Cross sections (a, c, e) and element distributions (b, d, f) of R-30 coating deposited initially (a, b) and annealed for 5 h (c, d) and 100 h (e, f)
Fig.4  Cross sections (a, c, e) and element distributions (b, d, f) of R-35 coating deposited initially (a, b) and annealed for 5 h (c, d) and 100 h (e, f)
Fig.5  Variations of depth of SDZ or SRZ with heat treatment time in vacuum
Fig.6  EPMA elemental distributions of Ni (a), Al (b), Re (c), Cr (d), W (e) and Mo (f) of the cross section of N5 superalloy with R-30 coating after annealling for 5 h
[1] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280
[2] Schulz U, Leyens C, Fristcher K.Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerosp. Sci. Technol., 2003, 7(1): 73
[3] Xu H B, Guo H B.Thermal Barrier Coatings [M]. Cambridge: Woodhead Publishing, 2011: 1
[4] Wei Q L, Guo H B, Gong S K, et al.Novel microstructure of EB-PVD double ceramic layered thermal barrier coatings[J]. Thin Solid Films, 2008, 516(16): 5736
[5] Miller R A.Current status of thermal barrier coatings-an overview[J]. Surf. Coat. Technol., 1987, 30(1): 1
[6] Racek O, Berndt C C, Guru D N, et al.Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques[J]. Surf. Coat. Technol., 2006, 201(2): 338
[7] Bai B, Guo H B, Peng H, et al.Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy[J]. Corros. Sci., 2011, 53(9): 2721
[8] Evans H E, Taylor M P.Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxid. Met., 2001, 55(1): 17
[9] Basukia E, Croskya A, Gleeson B, et al.Interdiffusion behaviour in aluminide-coated René 80H at 1150 ℃[J]. Mater. Sci. Eng., 1997, A224(1): 27
[10] Nystrom J D, Pollock T M, Murphy W H, et al. Discontinuous cellular precipitation in a high-refractory nickel-base superalloy [J]. Metall. Mater. Trans., 1997, 28(12)A: 2443
[11] Angenete J, Stiller K, Bakchinova E, et al.Microstructural and microchemical development of simple and pt-modified aluminide diffusion coatings during long term oxidation at 1050 ℃[J]. Surf. Coat. Technol., 2004, 176(3): 272
[12] Maurel V, Helfen L, Soulignac R, et al.Three-dimensional damage evolution measurement in EB-PVD TBCs using synchrotron laminography[J]. Oxid. Met., 2013, 79(3/4): 313
[13] Reed R C.The Superalloys Fundamentals and Applications [M]. New York: Cambridge University Press, 2006: 312
[14] Murakami H, Sakai T.Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys[J]. Scr. Mater., 2008, 59(4): 428
[15] Hong H U, Yoon J G, Choi B G, et al.On the mechanism of secondary reaction zone formation in a coated Nickel-based single-crystal superalloy containing ruthenium[J]. Scr. Mater., 2013, 69(1): 33
[16] Liu C T.Effect of boron on grain-boundaries in Ni3Al[J]. Mater. Chem. Phys., 1995, 42(1): 77
[17] Liu C T, White C L, Horton J A, et al.Effect of boron on grain-boundaries in Ni3Al[J]. Acta Metall., 1985, 33(1): 213
[18] Haynes J A, Pint B A, Zhang Y, et al.Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ-γ ′ NiPtAl coatings on various superalloys[J]. Surf. Coat. Technol., 2007, 202(4): 730
[19] Guo H, Sun L, Li H, et al.High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system[J]. Thin Solid Films, 2008, 516(16): 5732
[20] Paidar V, Pope D P.The anomalous temperature dependence of the yield stress and related orientational dependences in L12 compounds[J]. Acta Metall., 1984, 32(3): 435
[21] Mumm D R, Evans A G, Spitsberg I T.Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system[J]. Acta Mater., 2001, 49(12): 2329
[22] Peng H, Guo H B, He J, et al.Oxidation and diffusion barrier behaviors of double-layer NiCoCrAlY coatings produced by plasma activated EB-PVD[J]. Surf. Coat. Technol., 2011, 205(19): 4658
[23] Sun J Y, Pei Y L, Li S S, et al.Improvement in ductility of high strength polycrystalline Ni-rich Ni3Al alloy produced by EB-PVD[J]. J. Alloys Compd., 2014, 614: 196
[24] Okamoto H.Al-Ni (aluminum-nickel)[J]. J. Phase Equilib. Diffus., 2004, 25(4): 394
[25] Wang R, Gong X, Peng H, et al.Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations[J]. Appl. Surf. Sci., 2015, 326: 124
[26] Bürgel R, Portella P D, Preuhs J.Recrystallization in single crystals of nickel base superalloys [A]. Superalloys 2000[C]. Seven Springs, 2000: 229
[27] Beke D L, Szabó I A, Erdélyi Z, et al.Diffusion-induced stresses and their relaxation[J]. Mater. Sci. Eng., 2004, A387: 4
[28] Yu Z, Hass D D, Wadley H N G. NiAl bond coats made by a directed vapor deposition approach[J]. Mater. Sci. Eng., 2005, A394(1): 43
[29] Guo H, Zhang T, Wang S, et al.Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 ℃[J]. Corros. Sci., 2011, 53(6): 2228
[1] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
No Suggested Reading articles found!