Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 489-496    DOI: 10.11902/1005.4537.2016.129
Orginal Article Current Issue | Archive | Adv Search |
Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air
Jiapeng HUANG1,Bin YANG2,Hang WANG2()
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Institute of Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Download:  HTML  PDF(6450KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-10Cr-5Al alloys with addition of 1%(mass fraction) of Y, La, Ce, Y+La, Y+Ce and La+Ce respectively, were prepared by vacuum induction melting. Then their oxidation behavior in air at 1000 ℃ was studied by means of thermogravimetric analysis, X-ray diffraction and scanning electron microscope with energy dispersive spectroscope. The results indicated that the oxidation kinetics of the alloys with addition of different rare earth elements at 1000 ℃ obeyed the parabolic law; however only the single addition of Y could decrease the oxidation rate of Ni-10Cr-5Al alloy, but the addition of all others increased the oxidation rate of the alloys. The multiple additions of rare earth elements could promote the internal oxidation of the alloys along grain boundaries. Besides, the transformation of θ-Al2O3 to α-Al2O3 of the formed oxide scales is suppressed in alloys containing rare earths, which will beneficial to improve the adhesion of the oxide scale.

Key words:  NiCrAl alloy      rare earth element      reactive element effect      high temperature oxidation     

Cite this article: 

Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 489-496.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.129     OR     https://www.jcscp.org/EN/Y2016/V36/I5/489

Fig.1  Mass gains of all (a) and five (b) of Ni-10Cr-5Al sample with RE additions during oxidation at 1000 ℃ in air
Alloy sample kp1 (Linear law) / mg(cm2h)-1 kp2 (Parabolic law) / mg2(cm4h)-1
NiCrAl (N0) 0.116 0.018
NiCrAl+Y (N1) 0.049 0.001
NiCrAl+La (N2) 0.155 0.050
NiCrAl+Ce (N3) 0.320 0.049
NiCrAl+(Y+La) (N4) 0.271 0.093
NiCrAl+(Y+Ce) (N5) 0.783 1.782
NiCrAl+(La+Ce) (N6) 1.294 0.328
Table 1  Values of oxidation rate coefficient kp obtained by fitting the data in Fig.2
Fig.2  Squares of mass gains of all (a) and five (b) of Ni-10Cr-5Al alloys with RE vs time during oxidation at 1000 ℃
Fig.3  XRD patterns of the oxidescalesformed on various alloys after oxidation at 1000 ℃ for 200 h
Fig.4  Surface morphologies of Ni-10Cr-5Al alloy added with different rare earth elements after oxidation at 1000 ℃ in air for 200 h: (a,b) NiCrAl; (c, d) NiCrAl+Y; (e,f) NiCrAl+La; (g, h) NiCrAl+Ce; (i, j) NiCrAl+(Y+La); (k, l) NiCrAl+(Y+Ce); (m, n) NiCrAl+(La+Ce)
Alloy sample Phase constitutions of the oxidescale
NiCrAl (N0) NiO,α-Al2O3,NiAl2O4,NiCr2O4
NiCrAl+Y (N1) NiO,α-Al2O3,θ-Al2O3,NiAl2O4,NiCr2O4,Ni3Al
NiCrAl+La (N2) NiO,α-Al2O3,θ-Al2O3,NiAl2O4
NiCrAl+Ce (N3) NiO,α-Al2O3,θ-Al2O3,NiAl2O4,CeO2,Ni3Al
NiCrAl+(Y+La) (N4) NiO,α-Al2O3,θ-Al2O3,NiAl2O4
NiCrAl+(Y+Ce) (N5) NiO,α-Al2O3,θ-Al2O3,NiAl2O4,CeO2
NiCrAl+(La+Ce) (N6) NiO,α-Al2O3,θ-Al2O3,NiAl2O4,CeO2,Ni3Al
Table 2  Phase constitutions of oxide scales formed on various samples after oxidation at 1000 ℃ for 200 h
Fig.5  Cross-section morphologies of Ni-10Cr-5Al alloy added with different rare earth elements after oxidation at 1000 ℃ in air for 200 h: (a) NiCrAl; (b) NiCrAl+Y; (c) NiCrAl + La; (d) NiCrAl+Ce; (e) NiCrAl+(Y+La); (f) NiCrAl + (Y+Ce); (g) NiCrAl +(La+Ce)
[1] Shi C X, Zhong Z Y.Development and innovation of superalloy in China[J]. Acta Metall. Sin., 2010, 46(11): 1281
[1] (师昌绪, 仲增墉. 我国高温合金的发展与创新[J]. 金属学报, 2010, 46(11): 1281)
[2] Reed R C.The Superalloys Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 5
[3] Peng X, Wang F.High-temperature Oxidation of Aerospace Materials. In: Zhang S, Zhao D L, eds. Aerospace Materials Handbook [M]. Boca Raton: CRC Press, 2012: 237
[4] Geddes B, Leon H, Huang X.Superalloys: Alloying and Performance[M]. Washington: ASM International, 2010: 59
[5] Stringer J.The reactive element effect in high-temperature corrosion[J]. Mater. Sci. Eng., 1989, A120: 129
[6] Xu K D, Ren Z M, Li C J.Progress in application of rare metals in super alloys[J]. Rare Met., 2014, 33(2) : 111
[7] Li M S, Zhang Y M.A review on effect of reactive elements on oxidation of metals[J]. Corros. Sci. Prot. Technol., 2001, 13(6): 333
[7] (李美栓, 张亚明. 活性元素对合金高温氧化的作用机制[J]. 腐蚀科学与防护技术, 2001, 13(6): 333)
[8] Xiao C B, Han Y F.Effect of yttrium on high temperature oxidation behavior of Ni-Al-Mo-B alloy IC6[J]. J. Mater. Sci., 2001, 36(19): 4755
[9] Shi Z X, Liu S Z, Han M, et al.Influence of yttrium addition on high temperature oxidation resistance of single crystal superalloy[J]. J. Rare Earths, 2013, 31(8): 795
[10] Song L G, Li S S, Zheng Y R, et al.Effect of Y on high temperature oxidation resistance of a directionally solidified super alloy[J]. J. Rare Earths, 2004, 22(6): 794
[11] Yu P, Yang L, Wang W.Effect of reactive element yttrium on oxidation behavior of K38 superalloy at 1000 ℃ in air[J]. J. Shenyang Univ. Chem. Technol., 2011, 25(3): 212
[11] (于萍, 杨蕾, 王文. 不同含量的活性元素钇对K38高温合金1000 ℃氧化行为的影响[J]. 沈阳化工大学学报, 2011, 25(3):212)
[12] Weng F, Yu H, Chen C, et al.High-temperature oxidation behavior of Ni-based superalloys with Nb and Y and the interface characteristics of oxidation scales[J]. Surf. Interface Anal., 2015, 47(3): 362
[13] Li X L, He S M, Zhou X T, et al.Effects of rare earth yttrium on microstructure and properties of Ni-16Mo-7Cr-4Fe nickel-based super alloy[J]. Mater. Charact., 2014, 95: 171
[14] Xiao X, Xu L, Qin X Z, et al.Effect of elements Y and Ce on high temperature oxidation behavior of directionally-solidified Ni-basedsuper alloy[J]. Chin. J. Nonferrous Met., 2014, 24(11): 2769
[14] (肖旋, 徐乐, 秦学智等. 稀土元素Y和Ce对定向凝固镍基高温合金高温氧化行为的影响[J]. 中国有色金属学报, 2014, 24(11):2769)
[15] Song X, Wang L, Liu Y, et al.Effects of temperature and rare earth content on oxidation resistance of Ni-based super alloy[J]. Prog. Nat. Sci. Mater. Int., 2011, 21(3): 227
[16] Ul-Hamid A.TEM study of the effect of Y on the scale microstructures of Cr2O3- and Al2O3-forming alloys[J]. Oxid. Met., 2002, 58(1): 23
[17] Ul-Hamid A.TEM study of scale microstructures formed on Ni-10Cr and Ni-10Cr-5Al alloys with and without Y addition[J]. Oxid. Met., 2002, 58(1): 41
[18] Ramanathan L V.Role of rare-earth elements on high temperature oxidation behavior of Fe-Cr, Ni-Cr and Ni-Cr-Al alloys[J]. Corros. Sci., 1993, 35(5): 871
[19] Wang W, Yu P, Wang F, et al.The effect of yttrium addition on the isothermal oxidation behavior of sputtered K38 nanocrystalline coating at 1273 K in air[J]. Surf. Coat. Technol., 2007, 201(16): 7425
[20] Tawancy H M, Abbas N M.An analytical electron microscopy stu- dy of the role of La and Y during high-temperature oxidation of selected Ni-base alloys[J]. Scr. Metall. Mater., 1993, 29(5): 689
[21] Chen S F, Ma H P, Ju Q, et al.Effect of rare earth element lanthanum on oxidation behavior of GH230 at 1000 ℃ in air[J]. J. Iron. Steel Res., 2009, 21(11): 45
[21] (陈石富, 马惠萍, 鞠泉等. 稀土元素La对GH230合金1000 ℃抗氧化性能的影响[J]. 钢铁研究学报, 2009, 21(11): 45)
[22] Zhang Y F, Zhu D M, Shores D A.Effect of yttrium on the oxidation behavior of cast Ni-30Cr alloy[J]. Acta Metall. Mater., 1995, 43(11): 4015
[23] Nan H Q, Li J S, Hu R, et al.Effects of rare earth metal Ceadditions on the 1150 ℃ isothermal oxidation behavior of Ni-20Cr alloy[J]. Adv. Mater. Res., 2013, 771: 23
[24] Ramanarayanan T A, Ayer R, Petkovic-Luton R, et al.The influence of yttrium on oxide scale growth and adherence[J]. Oxid. Met., 1988, 29(5): 445
[25] Kuenzly J D, Douglass D L.The oxidation mechanism of Ni3Al containing yttrium[J]. Oxid. Met., 1974, 8(3): 139
[26] Wang J, Yuan L, Hu R, et al.Effect of lanthanum on oxidation behavior of Ni-20Cr-18W-1Mo alloys at 1373 K for 100 h in air[J]. Rare Met. Mater. Eng., 2014, 43(9): 2060
[27] Khanna A S, Wasserfuhr C, Quadakkers W J, et al.Addition of yttrium, cerium and hafnium to combat the deleterious effect of sulphur impurity during oxidation of an Ni-Cr-Al alloy[J]. Mater. Sci. Eng., 1989, A120: 185
[28] Ford D A, Fullagar K P L, Bhangu H K, et al. Improved performance rhenium containing single crystal alloy turbine blades utilizing PPM levels of the highly reactive elements lanthanum and yttrium[J]. J. Eng. Gas Turbines Power, 1999, 121(1): 138
[29] Cadoret Y, Monceau D, Bacos M P, et al.Effect of platinum on the growth rate of the oxide scale formed on cast nickel aluminide intermetallic alloys[J]. Oxid. Met., 2005, 64(4): 185
[1] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[2] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[4] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[5] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[6] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[7] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[8] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[10] Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element[J]. 中国腐蚀与防护学报, 2017, 37(1): 16-22.
[11] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] Tiantian YANG,Jingjun XU,Yuhai QIAN,Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] YUAN Juntao, WANG Wen, ZHU Shenglong, WANG Fuhui. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[14] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[15] FU Guangyan, YANG Ningning, WANG Yanyan. AIR OXIDATION OF Fe-Y ALLOYS AT 800℃[J]. 中国腐蚀与防护学报, 2010, 30(6): 453-456.
No Suggested Reading articles found!