Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (6期): 369-373    
  研究报告 本期目录 | 过刊浏览 |
 温度对N80碳钢CO2腐蚀产物膜性能的影响
李党国1;2 ;冯耀荣2; 白真权2 ;郑茂盛1
1.西安交通大学材料科学与工程学院 西安710049
2.中国石油天然气集团公司管材研究所 西安710065
EFFECT OF TEMPERATURE ON PROPERTIES OF CO2 CORROSION SCALE OF N80 CARBON STEEL
LI Dangguo1;2;FENG Yaorong2;BAI Zhenquan2;ZHENG Maosheng1
1.School of Materials Science and Engineering; Xi′an Jiaotong University; Xi′an 710049;
2.Tubular Goods Research Center; China National Petroleum Corporation; Xi′an 710065
全文: PDF(1287 KB)  
关键词 N80碳钢电化学阻抗谱地层水;扩散    
Abstract

The electrochemical properties and microstructures of CO2 corrosion scale formed on N80 carbon steel at 3 MPa and different temperatures in stratum water with saturated CO2 were investigated. The impedance results showed that the compactness of corrosion scale increased and the diffusion process decreased with increasing temperature; when temperature reached to 200 ℃, the diffusion impedance of corrosion scale decreased, indicating that the diffusion of ions in the scale became easy. electrochemical impedance spectrum (SEM) results revealed that the scale is of a double-layer structure, the length of the scale decreased with temperature increasing. Observation of the microstructure of the sample surface after removing the corrosion scale, showed that many big holes existed in the sample surface at low temperature,which became small and finally turned into uniform corrosion with temperature increasing. When temperature reached to 200 ℃ the holes became bigger again, indicating the corrosion extent promoted furthermore.

Key wordsN80 carbon steel    electrochemical impedance spectrum (EIS)    stratum water    diffusion
收稿日期: 2007-02-05     
ZTFLH: 

TG172.3

 
基金资助:

国家重点基础研究发展规划项目(G1999065004)和国家自然科学基金(50231020)资助

通讯作者: 冯耀荣 Fengyr@tgrc.org.cn   
Corresponding author: FENG Yaorong   

引用本文:

李党国 冯耀荣 白真权 郑茂盛.  温度对N80碳钢CO2腐蚀产物膜性能的影响[J]. 中国腐蚀与防护学报, 2008, 28(6期): 369-373.
LI Dang-Guo. EFFECT OF TEMPERATURE ON PROPERTIES OF CO2 CORROSION SCALE OF N80 CARBON STEEL. J Chin Soc Corr Pro, 2008, 28(6期): 369-373.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I6期/369

[1]Linter B R,Burstein G T.Reaction of pipeline steels in carbon dioxide solutions[J].Corros.Sci.,1999,41(2):117-139
[2]Xa Z,Chou K C,Smialowska Z S.Pitting corrosion of carbon steel in CO2-containing NaCl brine[J].Corrosion,1989,45(8):636
[3]Ikeda A,Udeda M,Mukai S.Advances in CO2corrosion[A].In:Hausler R H.Giddard H P,eds.,Corrosion/84[C].Houston,Texas:NACE,1984,1:39-143
[4]Moraes F D de,Shadley J R,Chen J F,et al.Characterization of CO2corrosion product scales related to environmental conditions[A].Corrosion/2000[C].Orlando,Florida,2000,30
[5]Zheng J S.The research situation about CO2corrosion[J].Fault-block Oil Gas Field,1996,3(1):62-65(郑家燊.二氧化碳腐蚀的研究现状[J].断块油气田,1996,3(1):62-65)
[6]Zhang X Y.A review on acid fracturing technology in carbonate-stone reservoirs[J].Oilfield Chem.,1997,14(2):190-196(张学元.油气开发中二氧化碳腐蚀的研究现状和趋势[J],油田化学,1997,14(2):190-196)
[7]Wang J,Cao C N,Lin H C.Impedance spectroscopy character of the pit corrosion development[J].J.Chin.Soc.Corros.Prot.,1989,9(4):271-276(王佳,曹楚南,林海潮.孔蚀发展期的电极阻抗谱特征[J].中国腐蚀与防护学报,1989,9(4):271-276)
[8]Zeng C L,Wang W,Wu W T.Electrochemical impedance models for molten salts induced corrosion[J].Acta Metall.Sin.,1999,35(7):751-757(曾潮流,王文,吴维(山文).熔融盐热腐蚀的电化学阻抗模型[J].金属学报,1999,35(7):751-757)
[9]Ogundele G I,White W E.Some observation on corrosion of car-bon steel in aqueous environments containing carbon dioxide[J].Corrosion,1986,42(2):71-77
[10]Nesic S,Postlethwaite J,Olsen S.An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide so-lutions[J].Corrosion,1996,52(4):280-294
[11]Chen C F,Lu M X,Zhao G X,et al.The EIS analysis of cathodic reactions during CO2corrosion of N80steel[J].Acta Metall.Sin.,2003,39(1):74-78(陈长风,路民旭,赵国仙等.N80油套管CO2腐蚀阴极过程电化学阻抗谱分析[J].金属学报,2003,39(1):74-78)
[12]Davies D H,Burstein G T.The effects of bicarbonate on the cor-rosion and passivation of iron[J].Corrosion,1980,36(8):416-42
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[3] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[4] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[5] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[9] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] 王军, 冯超, 彭碧草, 谢亿, 张明华, 吴堂清. S450EW焊接接头在NaHSO3溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] 王佳, 贾梦洋, 杨朝晖, 韩冰. 腐蚀电化学阻抗谱等效电路解析完备性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] 冯立, 张立功, 李思振, 郑大江, 林昌健, 董士刚. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(4): 360-365.
[15] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.