Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (2): 75-79     
  研究报告 本期目录 | 过刊浏览 |
Cu-20Zr合金在盐酸溶液中的脱合金腐蚀历程
吕海波;李 瑛;王福会
中国科学院金属研究所 腐蚀与防护国家重点实验室
Corrosion Characteristics of Cu-20Zr alloy in Hydrochloric Acid Solution
Haibo Lu;Ying Li;Fuhui Wang
中国科学院金属研究所 腐蚀与防护国家重点实验室
全文: PDF(251 KB)  
摘要: 采用电化学方法、化学分析和表面分析技术,系统研究了Cu-20Zr双相铸态合金和磁控溅射Cu-20Zr纳米薄膜在HCl溶液中的脱合金腐蚀规律。对Cu-20Zr双相铸态合金的研究表明,铸态Cu-20Zr合金中的双相为富Zr的Cu51Zr14相,及Cu与Cu51Zr14的共晶组织;在低阳极极化电位条件下,Cu51Zr14相因富含活性组元Zr而优先溶解,说明双相合金的溶解行为首先决定于合金的相及其身的活性。对溅射Cu-20Zr纳米薄膜腐蚀规律的研究表明,在不同电极电位下,薄膜中各元素的溶解规律不同,在电极电位低于Cu的标准电极电位时,材料的腐蚀以富Zr相中Zr组元的优先溶解为主;但当电极电位高于Cu的标准电极电位后,薄膜中Cu、Zr元素同时溶解;随后,由于Cu2+与溶液中的Cl-离子反应,生成氯化铜或氯化亚铜腐蚀产物覆盖于薄膜表面,使Cu的溶解过程受到抑制,但Zr元素却仍然随电极电位的增加而快速溶解。
关键词 脱合金腐蚀磁控溅射纳米薄膜    
Abstract:The dealloying mechanism of the duplex-phase Cu-20Zr cast alloy and sputtered Cu-20Zr film in hydrochloric acid solution was investigated using the electrochemical methods, chemical and surface analysis technique. Results showed the duplex-phase in cast Cu-20Zr alloy is composed by two phases, one is the Zr-rich Cu51Zr14 phase, the anothers is the eutectoid of the Cu and Cu51Zr14 phase. The rich-Zr Cu51Zr14 phase selectively dissolves owing to its more reactivity at the low anodic potential, which illustrates the dissolution mechanism of the Cu-20Zr alloy is decided by the stability of the microstructure.The study of the corrosion rules of sputtered Cu-20Zr film shows further that the dissolution process of each element is different at the different polarized potential. When the potential is lower than the redox of Cu/Cu2+ ,the dissolution of Zr atoms is the main process;when the potential is higher than redox of Cu/Cu2+, Zr and Cu atoms in the film simultaneously dissolve, and the dissolution rate of Cu atoms is higher than that of Zr atoms. Subsequently ,Cu ions react with Cl ioms in the electrolyte, and form the corrosion product of Cu (I) and Cu (II) complex compound. These corrosion products covered the surface of the film,retarded the dissolution of Cu atoms.Zr atoms still dissolve continually with increasing the potential.
Key wordsdealloying    magnetron sputtering    nanocrystalline film
收稿日期: 2004-10-27     
ZTFLH:  TG174.71  
通讯作者: 吕海波     E-mail: hblv@imr.ac.cn
Corresponding author: Haibo Lu     E-mail: hblv@imr.ac.cn

引用本文:

吕海波; 李瑛; 王福会 . Cu-20Zr合金在盐酸溶液中的脱合金腐蚀历程[J]. 中国腐蚀与防护学报, 2006, 26(2): 75-79 .
Haibo Lu, Ying Li, Fuhui Wang. Corrosion Characteristics of Cu-20Zr alloy in Hydrochloric Acid Solution. J Chin Soc Corr Pro, 2006, 26(2): 75-79 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2006/V26/I2/75

[1]Sieradzki K,Newman R C.Eupopean Patent 0392738[P].
[2]Vvedenskii A V,Grushevskaya S N.Kinetic peculiarities of anodicdissolution of copper and its gold alloys accompanied by the forma-tion of insoluble Cu(Ⅰ)products[J].Corros.Sci.,2003,45:2391-2413
[3]Rohatgi P K,Nath D,Kim J K,Agrawal A N.Corrosion and deal-loying of cast lead-free copper alloy-graphite composites[J].Corros.Sci.,2000,42:1553-1571
[4]Mansfeld F,Liu G,Xiao H,Tsai C H,Little B J.The corrosion be-havior of copper alloys,stainless steels and titanium in seawater[J].Corros.Sci.,1994,36:2063-2095
[5]Buchheit R G,Martinez M A,Montes L P.Evidence for Cu ionformation by dissolution and dealloying the Al2CuMg intermetalliccompound in rotating ring-disk collection experiments[J].J.Electrochem.Soc.,2000,147:119-124
[6]Ateya B G,Fritz J D,Pickering H W.Kinetics of dealloying of acopper-5 atomic percent gold alloy[J].J.Electrochem.Soc.,1997,144:2606-2613
[7]Russell S W,Alford T L,Mayer J W.Dealloying kinetics ofCu1-xTixon SiO2using in-situ X-ray diffraction[J].J.Elec-trochem.Soc.,1995,142:1308-1317
[8]Burzynska L.Comparison of the spontaneous and anodic processesduring dissolution of brass[J].Corros.Sci.,2001,43:1053-1069
[9]Martin H,Carro P,Creus A H,Morales J,et al.Interplay of sur-face and surface tension in the evolution of solid/liquid interfaces.Dealloying of beta-brass in aqueous sodium chloride[J].J.Phys.Chem.B,2000,104:8229-8237
[10]Pickering H W.Stress corrosion via localized anodic dissolution inCu-Au alloys[J].Corrosion,1969,35:289-290
[11]Buchheit R G,Grant R P,Hlava P F,et al.Local dissolution phe-nomena associated with S phase(Al2CuMg)particles in aluminumalloy 2024-T3[J].J.Electrochem.Soc.,1997,144:2621-2628
[12]Liu Y,Sultan E A,Koroleva E V,Skeldon P,et al.Grain orienta-tion effects on copper enrichment and oxygen generation duringanodizing of an Al-1 at%Cu alloy[J].Corros.Sci.,2003,45:789-797
[13]Kear G,Barker B D,Walsh F C.Electrochemical corrosion of unal-loyed copper in chloride media─a critical review[J].Corros.Sci.,2004,46:109-135
[14]ChmielováM,SeidlerováJ,Weiss Z.X-ray diffraction phaseanalysis of crystalline copper corrosion products after treatment indifferent chloride solutions[J].Corros.Sci.,2003,45:883-889
[15]Lee H P,Nobe K.Kinetics and mechanisms of Cu electrodissolu-tion in chloride media[J].J.Electrochem.Soc.,1986,133:2035-2043
[1] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[2] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[3] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[4] 晏敏胜, 何进, 冒守栋, 杨丽景, 聂霞, 宋振纶, 詹肇麟. NiCrAlY薄膜对Sm2Co17磁体高温抗氧化性的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 183-188.
[5] 吕海波; 李瑛; 王福会 . 纳米化对Cu-20Zr合金腐蚀行为的改善[J]. 中国腐蚀与防护学报, 2006, 26(3): 171-175 .
[6] 孟国哲; 李瑛; 王福会 . Fe-20Cr纳米涂层的电化学行为[J]. 中国腐蚀与防护学报, 2006, 26(1): 11-18 .
[7] 李雪莉; 李瑛; 王福会 . Fe20Cr溅射纳米涂层腐蚀电化学性能研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 84-88 .
[8] 李瑛; 耿树江; 王福会 . 磁控溅射IN738涂层耐盐水腐蚀性能研究[J]. 中国腐蚀与防护学报, 2002, 22(6): 349-354 .