|
|
阴极保护电位对破损环氧涂层阴极剥离的影响 |
王贵容1,2,邵亚薇1( ),王艳秋1,孟国哲1,刘斌1 |
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001 2. 航空工业成都飞机工业 (集团) 有限责任公司 成都 610092 |
|
Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating |
Guirong WANG1,2,Yawei SHAO1( ),Yanqiu WANG1,Guozhe MENG1,Bin LIU1 |
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 2. Aviation Industry Chengdu Aircraft Industry (Group) Co., LTD., Chengdu 610092, China |
引用本文:
王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
Guirong WANG,
Yawei SHAO,
Yanqiu WANG,
Guozhe MENG,
Bin LIU.
Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 235-244.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2018.079
或
https://www.jcscp.org/CN/Y2019/V39/I3/235
|
[1] | Wang F Y, Wang H. Reaearch on the status and infrastructures of offshore wind farm all over the world [J]. Shipbuild. China, 2011, 52(S2): 587 | [1] | (王风云, 王辉. 国内外海上风电场现状及其基础设施研究 [J]. 中国造船, 2011, 52(增刊2): 587) | [2] | Xu L K, Ma L, Xing S H, et al. Review on cathodic protection for marine structures [J]. Mater. China, 2014, 33: 106 | [2] | (许立坤, 马力, 邢少华等. 海洋工程阴极保护技术发展评述 [J]. 中国材料进展, 2014, 33: 106) | [3] | Li X, Bailey S I. A laboratory technique for evaluating marine splash zone corrosion [J]. Adv. Mater. Res., 2012, 347-353: 3345 | [4] | Bi H C, Sykes J. An investigation of cathodic oxygen reduction beneath an intact organic coating on mild steel and its relevance to cathodic disbonding [J]. Prog. Org. Coat., 2015, 87: 83 | [5] | Shi W, Lyon S B. Investigation using localised SVET into protection at defects in epoxy coated mild steel under intermittent cathodic protection simulating inter-tidal and splash zones [J]. Prog. Org. Coat., 2017, 102: 66 | [6] | Eltai E O, Scantlebury J D, Koroleva E V. Protective properties of intact unpigmented epoxy coated mild steel under cathodic protection [J]. Prog. Org. Coat., 2012, 73: 8 | [7] | Li Y N. The research of the cathodic ptotection effect on broken organic coating [D]. Qingdao. Ocean University of China, 2011 | [7] | (李玉楠. 阴极保护对破损有机涂层防护作用的研究 [D]. 青岛: 中国海洋大学, 2011) | [8] | Zhang L. The influence of cathodic polarization on performance of Zinc-rich coatings on steel [D]. Beijing: Beijing University of Chemical Technology, 2013 | [8] | (张丽. 外加电流阴极极化下环氧富锌涂层的失效行为研究 [D]. 北京: 北京化工大学, 2013) | [9] | Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225 | [9] | (潘大伟, 高心心, 马力等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225) | [10] | Zhang M S, Yin P F, Ma C J. The impressed current cathodic protection technology of jacket platform [J]. Total Corros. Control, 2013, 27(3): 20 | [10] | (张脉松, 尹鹏飞, 马长江. 海洋平台外加电流阴极保护技术 [J]. 全面腐蚀控制, 2013, 27(3): 20) | [11] | Yan M C, Xu J, Yu L B, et al. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte [J]. Corros. Sci., 2016, 110: 23 | [12] | Huang Y C. Electrochemical protection and its application Ⅱ The principle of cathodic protection and its application [J]. Corros. Prot., 2000, 21: 191 | [12] | (黄永昌. 电化学保护技术及其应用 第二讲 阴极保护原理及其应用 [J]. 腐蚀与防护, 2000, 21: 191) | [13] | Le Thu Q, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51: 2491 | [14] | Touzain S, Le Thu Q, Bonnet G. Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests [J]. Prog. Org. Coat., 2005, 52: 311 | [15] | Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24: 343 | [16] | S?rensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination: Quantification of ionic transport rates along coating–steel interfaces [J]. Prog. Org. Coat., 2010, 67: 107 | [17] | Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. China, 2011, 41(Z2): 149 | [17] | (李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报 (自然科学版), 2011, 41(Z2): 149) | [18] | Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10 | [18] | (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10) | [19] | Rousseau C, Baraud F, Leleyter L, et al. Kaolinite influence on calcareous deposit formation [J]. Electrochim. Acta, 2009, 55: 196 | [20] | Wroblowa H S, Qaderi S B. Mechanism and kinetics of oxygen reduction on steel [J]. J. Electroanal. Chem. Interfacial Electrochem., 1990, 279: 231 | [21] | Barchiche C, Deslouis C, Festy D, et al. Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II) [J]. Electrochim. Acta, 2003, 48: 1645 | [22] | Gutjahr A, Dabringhaus H, Lacmann R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates [J]. J. Cryst. Growth, 1996, 158: 310 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|