Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (3): 235-244    DOI: 10.11902/1005.4537.2018.079
  研究报告 本期目录 | 过刊浏览 |
阴极保护电位对破损环氧涂层阴极剥离的影响
王贵容1,2,邵亚薇1(),王艳秋1,孟国哲1,刘斌1
1. 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2. 航空工业成都飞机工业 (集团) 有限责任公司 成都 610092
Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating
Guirong WANG1,2,Yawei SHAO1(),Yanqiu WANG1,Guozhe MENG1,Bin LIU1
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Aviation Industry Chengdu Aircraft Industry (Group) Co., LTD., Chengdu 610092, China
全文: PDF(21187 KB)   HTML
摘要: 

采用电化学阻抗技术 (EIS),并结合SEM,EDS和XRD研究了室温、静态模拟海水中不同保护电位对海洋平台研制钢在模拟海水中防腐涂料与阴极保护联合作用效果以及对破损环氧防腐涂层的阴极剥离机理。结果表明:在本实验选择的保护电位中,随着电位的负移,涂层剥离面积逐渐增大。-750 mV (vs SCE,下同) 保护电位对于破损涂层的金属基体欠保护。-1050 mV电位极化下发生严重的析氢现象,破坏了钙质沉积层的完整性,界面碱化程度较大,涂层剥离面积最大;-850和-950 mV保护电位均能抑制破损处金属的腐蚀;-950 mV保护电位下生成的CaCO3和Mg(OH)2钙质沉积层完整致密,保护效果最佳。

关键词 环氧涂层阴极保护电位破损阴极剥离    
Abstract

The combined effectiveness of the cathodic protection and epoxy coating for a steel, which is newly developed for offshore platform, as well as the cathodic delamination behavior of the epoxy coating with damages in artificial seawater at room temperature were examined by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and X-ray diffractometer (XRD). Results indicated that as the potential goes down within the selected range of protection potentials of -750~-1050 mV (vs SEC), the delamination area of the coatings increases. The ordinary protection potential -750 mV (vs SEC) for epoxy coatings is no longer applicable for the damaged coatings, while the cathode potential -1050 mV leads to serious hydrogen evolution in the damaged area, resulting in the integrity destruction of the deposited film there, leading to the seriously interfacial alkalization and therewith, the cathodic delamination area increases. However, the protection potential of -850 or -950 mV can inhibit the corrosion of metal on the damaged site of coating. The deposited film formed under -950 mV on the damaged site is composed of Mg(OH)2 and CaCO3 which is of integrity and dense, leading to the best protective effect on the substrate.

Key wordsepoxy coating    cathodic protection potential    damaged area    cathodic delamination
收稿日期: 2018-06-03     
ZTFLH:  TG174.461  
基金资助:国家重点研发计划(2016YFB0300604)
通讯作者: 邵亚薇     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: Yawei SHAO     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 王贵容,女,1992年生,硕士生

引用本文:

王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
Guirong WANG, Yawei SHAO, Yanqiu WANG, Guozhe MENG, Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 235-244.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.079      或      https://www.jcscp.org/CN/Y2019/V39/I3/235

图1  实验装置示意图
图2  施加不同保护电位1056 h后涂层表面宏观形貌图
Potential (vs SCE)mVNumber of blisterMaximum distance of blisters to the edge of the leak /mmMinimum distance of blisters to the edge of the leak /mm
OCP0------
-75042.00.5
-85053.20.3
-95053.30.8
-105084.50.3
表1  施加不同保护电位浸泡1056 h后涂层鼓泡情况
图3  施加不同保护电位下浸泡1056 h后涂层阴极剥离情况
Potential (vs SCE) /mVMaximum delamination distance from damaged edge / mmMinimum delamination distance from damaged edge / mmDelamination areamm2
OCP4.23.454
-7506.05.1117
-8507.26.3169
-9507.56.9183
-10508.57.8243
表2  施加不同保护电位下浸泡1056 h后涂层的剥离距离及剥离面积
图4  图3c腐蚀处的局部放大图及EDS分析结果
AreaFeMgCaAlSiCrMn
A59.011.472.135.612.870.761.05
B1.50.782.361.911.240.243.01
表3  图4a中A和B处的EDS分析结果
图5  EIS拟合所用等效电路
图6  不同保护电位下破损涂层在不同保护时间的阻抗图
图7  不同保护电位下Rt随时间的变化图
图8  不同保护电位下的Rf随时间变化图
图9  不同保护电位下沉积层物相的XRD谱
图10  不同保护电位下涂层破损处及沉积层的微观形貌照片
图11  不同保护电位下涂层破损处去除沉积层后的微观形貌图
[1] Wang F Y, Wang H. Reaearch on the status and infrastructures of offshore wind farm all over the world [J]. Shipbuild. China, 2011, 52(S2): 587
[1] (王风云, 王辉. 国内外海上风电场现状及其基础设施研究 [J]. 中国造船, 2011, 52(增刊2): 587)
[2] Xu L K, Ma L, Xing S H, et al. Review on cathodic protection for marine structures [J]. Mater. China, 2014, 33: 106
[2] (许立坤, 马力, 邢少华等. 海洋工程阴极保护技术发展评述 [J]. 中国材料进展, 2014, 33: 106)
[3] Li X, Bailey S I. A laboratory technique for evaluating marine splash zone corrosion [J]. Adv. Mater. Res., 2012, 347-353: 3345
[4] Bi H C, Sykes J. An investigation of cathodic oxygen reduction beneath an intact organic coating on mild steel and its relevance to cathodic disbonding [J]. Prog. Org. Coat., 2015, 87: 83
[5] Shi W, Lyon S B. Investigation using localised SVET into protection at defects in epoxy coated mild steel under intermittent cathodic protection simulating inter-tidal and splash zones [J]. Prog. Org. Coat., 2017, 102: 66
[6] Eltai E O, Scantlebury J D, Koroleva E V. Protective properties of intact unpigmented epoxy coated mild steel under cathodic protection [J]. Prog. Org. Coat., 2012, 73: 8
[7] Li Y N. The research of the cathodic ptotection effect on broken organic coating [D]. Qingdao. Ocean University of China, 2011
[7] (李玉楠. 阴极保护对破损有机涂层防护作用的研究 [D]. 青岛: 中国海洋大学, 2011)
[8] Zhang L. The influence of cathodic polarization on performance of Zinc-rich coatings on steel [D]. Beijing: Beijing University of Chemical Technology, 2013
[8] (张丽. 外加电流阴极极化下环氧富锌涂层的失效行为研究 [D]. 北京: 北京化工大学, 2013)
[9] Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
[9] (潘大伟, 高心心, 马力等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225)
[10] Zhang M S, Yin P F, Ma C J. The impressed current cathodic protection technology of jacket platform [J]. Total Corros. Control, 2013, 27(3): 20
[10] (张脉松, 尹鹏飞, 马长江. 海洋平台外加电流阴极保护技术 [J]. 全面腐蚀控制, 2013, 27(3): 20)
[11] Yan M C, Xu J, Yu L B, et al. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte [J]. Corros. Sci., 2016, 110: 23
[12] Huang Y C. Electrochemical protection and its application Ⅱ The principle of cathodic protection and its application [J]. Corros. Prot., 2000, 21: 191
[12] (黄永昌. 电化学保护技术及其应用 第二讲 阴极保护原理及其应用 [J]. 腐蚀与防护, 2000, 21: 191)
[13] Le Thu Q, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51: 2491
[14] Touzain S, Le Thu Q, Bonnet G. Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests [J]. Prog. Org. Coat., 2005, 52: 311
[15] Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24: 343
[16] S?rensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination: Quantification of ionic transport rates along coating–steel interfaces [J]. Prog. Org. Coat., 2010, 67: 107
[17] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. China, 2011, 41(Z2): 149
[17] (李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报 (自然科学版), 2011, 41(Z2): 149)
[18] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
[18] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[19] Rousseau C, Baraud F, Leleyter L, et al. Kaolinite influence on calcareous deposit formation [J]. Electrochim. Acta, 2009, 55: 196
[20] Wroblowa H S, Qaderi S B. Mechanism and kinetics of oxygen reduction on steel [J]. J. Electroanal. Chem. Interfacial Electrochem., 1990, 279: 231
[21] Barchiche C, Deslouis C, Festy D, et al. Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II) [J]. Electrochim. Acta, 2003, 48: 1645
[22] Gutjahr A, Dabringhaus H, Lacmann R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates [J]. J. Cryst. Growth, 1996, 158: 310
[1] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[3] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[4] 孟凡帝, 刘莉, 李瑛, 王福会. 用于原位检测在深海并压力交变环境中有机涂层电化学阻抗的预埋微电极研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[5] 高洪扬,王巍,许立坤,马力,叶章基,李相波. 改性环氧防腐涂层在模拟深海高压环境的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[6] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[7] 孙伟, 尹桂来, 刘福春, 唐囡, 韩恩厚, 万军彪, 柯伟, 邓静伟. 装载缓蚀剂的纳米SiO2对环氧涂层耐腐蚀性的影响[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[8] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[9] 王雪莹, 王佳, 刘在健, 丁健, 王海杰. 金属罐内涂层破损区气相定位检测局部电化学探头技术的研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.
[10] 元辛, 岳珠峰, 温世峰, 李磊. 铝合金表面有机硅环氧涂层的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 375-381.
[11] 原徐杰, 张俊喜, 张世明, 谈天. 镀锌层破损输电杆塔用镀锌钢在干湿交替作用下的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(5): 395-399.
[12] 刘樱,刘莉,李瑛,王福会. 高静水压力对水在环氧涂层中传输行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[13] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[14] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 循环压力对环氧涂层在模拟深海环境中失效行为的影响[J]. 中国腐蚀与防护学报, 2011, 31(4): 275-281.
[15] 曹佳 邵亚薇 张涛 孟国哲. 磷酸锌对环氧涂层破损处金属的缓蚀作用[J]. 中国腐蚀与防护学报, 2009, 29(6): 437-441.