Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (4): 358-364    DOI: 10.11902/1005.4537.2017.160
  研究报告 本期目录 | 过刊浏览 |
Cr对镍基合金在超临界水中氧化行为的影响研究
谢冬柏1(), 周游宇2, 鲁金涛3, 王文2, 朱圣龙2, 王福会4
1 新疆警察学院刑事科学技术系 乌鲁木齐 830011
2 中国科学院金属研究所 腐蚀与防护实验室 沈阳 110016
3 西安热工研究院有限公司 国家能源清洁高效火力发电技术研发中心 西安 710032
4 东北大学材料科学与工程学院 沈阳 110819
Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water
Dongbai XIE1(), Youyu ZHOU2, Jintao LU3, Wen WANG2, Shenglong ZHU2, Fuhui WANG4
1 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
2 Laboratory of Corrosion and Protection, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China;
4 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(4276 KB)   HTML
摘要: 

研究了3种Cr含量Ni-Fe-Cr合金在700 ℃/25 MPa纯水蒸汽环境中的氧化行为,重点分析了氧化动力学、氧化膜相组成及微观结构的变化规律。结果表明,随Cr含量的增加,合金在超临界水中的氧化增重持续降低,失稳氧化发生时间被延长,合金的抗氧化性能得到显著改善。在超临界水环境中,Cr2O3氧化膜更容易失效,维持保护性Cr2O3氧化膜稳定的临界Cr含量相比于干燥空气中的要高;Ni-Fe-Cr合金在超临界水中氧化时优先生成Cr2O3氧化膜,其中较低Cr含量的合金长期氧化后,在两层氧化膜界面处会形成较薄的富Ni氧化膜。

关键词 镍基合金Cr含量超临界水高温氧化    
Abstract

The oxidation behavior of three Ni-Fe-Cr alloys with different contents of Cr was studied in supercritical water at 700 ℃ under 25 MPa. Oxidation kinetics was acquired by weighting samples at intervals. After oxidation, the surface and cross-sectional morphologies, and phase compositions of the oxide scales were investigated using SEM/EDS and XRD. The results showed that the high Cr-content enhances the oxidation resistance of Ni-Fe-Cr alloys in supercritical water, i.e. lowering the mass gains and postponing the onset of breakaway oxidation. In supercritical water, the critical concentration of Cr, needed for the formation as well as sustained and steady growth of the protective chromia scale on Ni-Cr-Fe alloys, is higher than that in air. And in supercritical water, the protective Cr-rich oxide scale forms after a short time exposure. However, this protective Cr-rich oxide scale transforms to non-protective scale more easily in the further oxidation process. As exposure time increases, a duplex oxide scale forms on the alloy with low Cr concentration, and Ni-rich oxide exists in between the two oxide layers.

Key wordsNi-based alloy    Cr content    supercritical water    high temperature oxidation
收稿日期: 2017-10-04     
ZTFLH:  TG172  
基金资助:2017年公安部科技强警基础工作专项 (2017GABJC11),西安热工研究院有限公司国家能源清洁高效火力发电技术研究中心研究项目和江西省材料表面工程重点实验室开放课题
作者简介:

作者简介 谢冬柏,男,1973年生,博士,副教授

引用本文:

谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 358-364.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.160      或      https://www.jcscp.org/CN/Y2018/V38/I4/358

Sample Cr Al Ti Si Mo Nb W Fe Ni Mn
25Cr 25 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
22Cr 22 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
20Cr 20 1.3 1.0 0.05 0.8 1.0 0.5 30 Bal. 0.4
表1  3种镍基合金的名义成分
图1  合金在超临界水中的氧化增重曲线
图2  25Cr和20Cr试样在超临界水中氧化25 h后的表面形貌及元素分布
图3  25Cr合金超临界水中氧化200 h后的截面形貌及元素线分布
图4  22Cr试样在超临界水中氧化50和200 h后的截面形貌及元素线分布
图5  20Cr试样在超临界水中氧化200 h后的截面形貌及元素线分布
图6  25Cr,22Cr和20Cr试样在超临界水中氧化不同时间后的XRD谱
[1] Qi H J, Wang Y Q.Structural asnalysis of China's electric power energy[J]. Sci-Technol. Manage., 2004, 6(2): 56(齐海江, 王宇奇. 我国发电能源结构分析[J]. 科技与管理, 2004, 6(2): 56)
[2] Yang F.The R&D of heat resistant steel for USC power unit in China [A]. 600/1000MW USC Electric Power Station in China [C]. Yangzhou: China Electric Power Press, 2009: 23(杨富. 加快超超临界机组用新型钢开发确保超超临界机组稳步发展 [A]. 中国电机工程学会600/1000MW超超临界火电机组新型钢国产化研讨会论文集 [C]. 扬州: 中国电机工程学会, 2009: 23)
[3] Zhai S H, Gao X L, Chen G F.Analysis of green power generation technologies[J]. Power Sys. Eng., 2007, 23(1): 9(翟慎会, 高秀丽, 陈桂芳. 环境友好型发电技术的特性分析[J]. 电站系统工程, 2007, 23(1): 9)
[4] Tang F, Dong B, Zhao M.USC unit development and application in China[J]. Electr. Power Constr., 2010, 31(1): 80(唐飞, 董斌, 赵敏. 超超临界机组在我国的发展及应用[J]. 电力建设, 2010, 31(1): 80)
[5] Viswanathan R, Sarver J, Tanzosh J M.Boiler materials for ultra-supercritical coal power plants-Steamside oxidation[J]. J. Mater. Eng. Perform., 2006, 15: 255
[6] Wright I G, Dooley R B.A review of the oxidation behaviour of structural alloys in steam[J]. Int. Mater. Rev., 2010, 55: 129
[7] Berthod P, Aranda L, Mathieu S, et al.Influence of water vapour on the rate of oxidation of a Ni-25wt.% Cr alloy at high temperature[J]. Oxid. Met., 2013, 79: 517
[8] Abraham M A, Sunol A K.ACS Symposium Series 670, Supercritical Fluid Extraction and Pollution Prevention[M]. Washington, DC: American Chemical Society, 1997: 242
[9] Faust R, Shaffer T D.ACS Symposium Series 665, Cationic Polymerization Fundamentals and Applications[M]. Washington, DC: American Chemical Society, 1997: 242
[10] Degradation in supercritical water oxidation systems [R]. New Orleans, LA, USA: Am. Chem. Soc., Div. Ind. &Degradation in supercritical water oxidation systems [R]. New Orleans, LA, USA: Am. Chem. Soc., Div. Ind. & Eng. Chem. Inc., 1997
[11] Mougin J, Lucazeau G, Galerie A, et al.Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium[J]. Mater. Sci. Eng., 2001, A308: 118
[12] Chao J, González-Carrasco J L. The role of the surface roughness on the integrity of thermally generated oxide scales. Application to the Al2O3/MA956 system[J]. Mater. Sci. Eng., 1997, A230A: 39
[13] Kritzer P.Corrosion in high-temperature and supercritical water and aqueous solutions: A review[J]. J. Supercrit. Fluids, 2004, 29: 1
[14] Plugatyr A, Svishchev I M.Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept[J]. J. Supercrit. Fluids, 2008, 44: 31
[15] Kritzer P, Boukis N, Dinjus E.Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures[J]. Corrosion, 2000, 56: l093
[16] Machet A, Galtayries A, Zanna S, et al.XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy[J]. Electrochim. Acta, 2004, 49: 3957
[17] Li M S.High Temperature Corrosion of Metal [M]. Beijing: Metallurgical Industry Press, 2001: 186(李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 186)
[18] Zhou C G, Yu J S, Gong S K, et al.Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature[J]. Surf. Coat. Technol., 2002, 161: 86
[19] Wu Y, Narita T.Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor[J]. Surf. Coat. Technol., 2007, 202: 140
[20] Hänsel M, Quadakkers W J, Young D J.Role of water vapor in chromia-scale growth at low oxygen partial pressure[J]. Oxid. Met., 2003, 59: 285
[21] Asteman H, Svensson J E, Johansson L G, et al.Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor[J]. Oxid. Met., 1999, 52: 95
[22] Yuan J T, Wang W, Zhang H H, et al.Investigation into the failure mechanism of chromia scale thermally grown on an austenitic stainless steel in pure steam[J]. Corros. Sci., 2016, 109: 36
[23] Lobnig R E, Schmidt H P, Hennesen K, et al.Diffusion of cations in chromia layers grown on iron-base alloys[J]. Oxid. Met., 1992, 37: 81
[24] Tan L, Ren X, Sridharan K, et al.Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants[J]. Corros. Sci., 2008, 50: 3056
[25] Huang J B, Wu X Q, Han E-H.Electrochemical properties and growth mechanism of passive films on alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52: 3444
[26] Birks N, Meier G H, Pettit F S.Introduction to the High-Temperature Oxidation of Metals [M]. Cambridge: Cambridge University Press, 2006
[1] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[2] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[3] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[4] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[5] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[6] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[7] 王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[10] 张飘飘,杨忠民,陈颖,王慧敏. 含铬耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 93-100.
[11] 赵展,李景阳,董建新,姚志浩,张麦仓. 925镍铁基耐蚀合金均匀化及高温氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[12] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[13] 谢冬柏,单国. 燃油火场环境中助燃剂的快速检验方法研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[14] 张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[15] 杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.