Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (5): 476-482    DOI: 10.11902/1005.4537.2016.128
  本期目录 | 过刊浏览 |
石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能
杨甜甜1,2,徐敬军1(),钱余海1,李美栓1
1. 中国科学院金属研究所 沈阳材料科学国家 (联合) 实验室 沈阳 110016
2. 中国科学院大学 北京 100039
Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite
Tiantian YANG1,2,Jingjun XU1(),Yuhai QIAN1,Meishuan LI1
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100039, China
全文: PDF(5556 KB)   HTML
摘要: 

采用粉末包埋渗和磁控溅射的方法在石墨基体上制备了以SiC作为过渡层的ZrC/MoSi2微叠层涂层,并用XRD和SEM对涂层的相组成和显微结构进行了分析,同时用感应加热超高温实验系统测试了涂层在1600 ℃以上空气中的抗氧化性能。结果表明:磁控溅射所制备的ZrC/MoSi2微叠层涂层较为致密;涂层在1800 ℃的空气中具有较好的抗氧化能力,氧化15 min后单位面积氧化失重率为0.3×10-2 g/cm2,仅为石墨的2.9%。氧化后生成具有层状结构的SiO2和m-ZrO2,熔融态SiO2可愈合ZrO2层内的空洞和微裂纹,有效地阻挡氧向内扩散。氧化层由ZrO2和SiO2组成,氧化产物呈层状结构且各层较为致密。

关键词 超高温氧化微叠层涂层渗硅磁控溅射    
Abstract

To improve the ultra-high temperature oxidation resistance of graphite-based materials, a SiC transition layer of about 150 μm in thickness was prepared on graphite substrate by siliconizing method, and then a micro-laminated ZrC/MoSi2 coating of 22.5 μm in total thickness (corresponding five modulation cycles) was deposited on siliconized graphite by DC magnetron sputtering. The crystallographic structure and morphology of the ZrC/MoSi2-SiC composite coating before and after ultra-high temperature oxidation were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) with energy dispersion spectroscope (EDS). An ultra-high temperature oxidation testing apparatus based on induction heating was used to test the isothermal oxidation rate of the coating. After oxidation at 1800 ℃ in air for 15 min, the weight loss of the micro-laminated coating was 0.3×10-2 g/cm2, only 2.9% of that of the bare graphite. The oxide scale exhibited layered structure, composed alternatively of ZrO2 grains and molten SiO2. The existence of the molten SiO2 could seal the pores and micro-cracks in the ZrO2 layer. As a result, the oxide scale had ow oxygen permeability.

Key wordsultra-high temperature oxidation    micro-laminated coating    siliconizing    magnetronsputtering
    
基金资助:国家自然科学基金项目 (51401209和51571203) 及国家重大科学仪器专项项目 (2011YQ14014504) 资助

引用本文:

杨甜甜,徐敬军,钱余海,李美栓. 石墨基体上ZrC/MoSi2微叠层涂层的制备及抗超高温氧化性能[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
Tiantian YANG, Jingjun XU, Yuhai QIAN, Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 476-482.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.128      或      https://www.jcscp.org/CN/Y2016/V36/I5/476

图1  ZrC/MoSi2微叠层涂层结构示意图
图2  感应加热超高温氧化实验系统中真空室内样品加热示意图
图3  石墨粉末包埋渗硅后的表面和截面形貌
图4  磁控溅射制备的ZrC/MoSi2微叠层涂层的XRD谱
图5  磁控溅射制备的ZrC/MoSi2微叠层涂层表面形貌
图6  磁控溅射制备的ZrC/MoSi2微叠层涂层的断面形貌和EDS线扫描结果
图7  ZrC/MoSi2微叠层涂层在1800 ℃空气中氧化15 min后的XRD谱
图8  ZrC/MoSi2微叠层涂层在1800 ℃空气中氧化5和15 min后的表面微观形貌
图9  ZrC/MoSi2微叠层涂层在1800 ℃空气中氧化15 min后的断面形貌
Material Related reaction Product PBR value
ZrC (1), (2) ZrO2+CO (g) 1.45
MoSi2 (3) Mo5Si3+SiO2 (l) 3.05
(3), (5) Mo5Si3+SiO2 (g) 0.92
(4) MoO3+SiO2 (l) 3.04
(4), (5) MoO3+SiO2 (g) 0
表1  ZrC和MoSi2与O2完全反应后的PBR值
[1] Talmy I G, Opeka M M, Zaykoski J A.Oxidation-based materials selection for 2000 ℃+hypersonic aerosurfaces: Theoretical considerations and historical experience[J]. J. Mater. Sci., 2004, 39: 5887
[2] Windhorst T, Blount G.Carbon-carbon composites: A summary of recent developments and applications[J]. Mater. Des., 1997, 18(1): 11
[3] Sheehan J E, Buesking K W, Sullivan B J.Carbon-carbon composites[J]. Annu. Rev. Mater. Sci., 1994, 24: 19
[4] Li H J, Xue H, Fu Q G, et al.Research status and prospect of anti-oxidation coatings for Carbon/Carbon composites[J]. J. Inorg. Mater. , 2010, 25(4): 337
[4] (李贺军, 薛晖, 付前刚等. C/C复合材料高温抗氧化涂层的研究现状与展望[J]. 无机材料学报, 2010, 25(4): 337)
[5] Pierson H O.Handbook of Refractory Carbides and Nitrides[M]. New York: Noyes Publications, 1996, 55
[6] Silvestroni L, Sciti D, Balat-Pichelin M, et al.Zirconium carbide doped with tantalum silicide: Microstructure, mechanical properties and high temperature oxidation[J]. Mater. Chem. Phys., 2013, 143(1): 407
[7] Sharif A A.High-temperature oxidation of MoSi2[J]. J. Mater. Sci., 2009, 45(4): 865
[8] Westwood M E, Webster J D, Day R J, et al.Review oxidation protection for carbon fibre composites[J]. J. Mater. Sci., 1996, 31: 1389
[9] Yao X Y, Li H J, Zhang Y L, et al.A SiC/ZrB2-SiC/SiC oxidation resistance multilayer coating for carbon/carbon composites[J]. Corros. Sci., 2012, 57: 148
[10] Voevodin A A, Zabinski J S, Muratore C.Recent advances in hard, tough, and low friction nanocomposite coatings[J]. Tsinghua Sci. Technol., 2005, 10(6): 665
[11] Li M S, Zhong H B, Xu J J, et al.The ultra-high temperature oxidation testing methods and facility with controlling the atmospheres [P]. China Pat : ZL 200710083556.1, 2011
[11] (李美栓, 钟洪彬, 徐敬军等. 一种可控气氛超高温氧化方法及所用装置 [P]. 中国专利: ZL 200710083556.1, 2011)
[12] Bunshah R F.High rate evaporation/deposition process of metals, alloys, and ceramics for vacuum metallurgical applications[J]. J. Vac. Sci. Technol., 1974, 11(4): 814
[13] Ouyang J, Li X Y, Jin J, et al.Research progress in the structural, mechanical properties of ZrO2 and their applications[J]. Mater. Rev. 2013, 27(8): 13
[13] (欧阳静, 李晓玉, 金娇等. ZrO2的结构、力学性质与应用研究进展[J]. 材料导报, 2013, 27(8): 13)
[14] Jacobson N, Harder B, Myers D, et al.Oxidation transitions for SiC Part I. Active-to-passive transitions[J]. J. Am. Ceram. Soc., 2013, 96(3): 838
[15] Goto T, Homma H.High-temperature active/passive oxidation and bubble formation of CVD SiC in O2 and CO2 atmospheres[J]. J. Eur. Ceram. Soc., 2002, 22, 2749
[1] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[2] 孙超, 杨潇, 文玉华. 表面溅射高含铝奥氏体不锈钢合金涂层对316不锈钢抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[3] 晏敏胜, 何进, 冒守栋, 杨丽景, 聂霞, 宋振纶, 詹肇麟. NiCrAlY薄膜对Sm2Co17磁体高温抗氧化性的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 183-188.
[4] 钟洪彬 李美栓 周延春 王俊山 许正辉 张中伟 房学良. MC-C-O体系在超高温条件下相平衡的热力学分析[J]. 中国腐蚀与防护学报, 2009, 29(4): 301-305.
[5] 吕海波; 李瑛; 王福会 . 纳米化对Cu-20Zr合金腐蚀行为的改善[J]. 中国腐蚀与防护学报, 2006, 26(3): 171-175 .
[6] 吕海波; 李瑛; 王福会 . Cu-20Zr合金在盐酸溶液中的脱合金腐蚀历程[J]. 中国腐蚀与防护学报, 2006, 26(2): 75-79 .
[7] 孟国哲; 李瑛; 王福会 . Fe-20Cr纳米涂层的电化学行为[J]. 中国腐蚀与防护学报, 2006, 26(1): 11-18 .
[8] 李雪莉; 李瑛; 王福会 . Fe20Cr溅射纳米涂层腐蚀电化学性能研究[J]. 中国腐蚀与防护学报, 2003, 23(2): 84-88 .
[9] 李瑛; 耿树江; 王福会 . 磁控溅射IN738涂层耐盐水腐蚀性能研究[J]. 中国腐蚀与防护学报, 2002, 22(6): 349-354 .