Please wait a minute...
中国腐蚀与防护学报  2015, Vol. 35 Issue (1): 21-26    DOI: 10.11902/1005.4537.2013.241
  本期目录 | 过刊浏览 |
X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为
刘淑云1, 王帅星1,2, 杜楠1(), 王力强3, 肖金华1
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2. 西北工业大学 腐蚀与防护研究所 西安 710072
3. 成都飞机工业 (集团) 公司制造工程部 成都 610092
Electrochemical Behavior of X80 Pipeline Steel in Simulated Red Soil Solutions with Different pH
LIU Shuyun1, WANG Shuaixing1,2, DU Nan1(), WANG Liqiang3, XIAO Jinhua1
1. National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2. Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi'an 710072, China
3. Department of Manufacture Engineering, Chengdu Aircraft Industrial Group Co., Chengdu 610092, China
全文: PDF(2136 KB)   HTML
摘要: 

采用动电位极化曲线、电化学阻抗谱 (EIS) 及三维视频显微镜技术研究了X80钢在不同pH值红壤模拟溶液中的腐蚀电化学行为。结果表明,pH值为5.5时,X80钢在红壤模拟溶液中的腐蚀受氧去极化控制, X80钢表面存在腐蚀产物结合层,EIS由高频不完整容抗弧和低频容抗弧组成;随着pH值的降低,X80钢的腐蚀逐渐转为电化学活化控制,自腐蚀电流密度逐渐增大,腐蚀阻力减小,腐蚀不断加剧;当pH值降至4.0~3.0后,X80钢表面出现大量蚀点,EIS低频区出现感抗特征。

关键词 X80管线钢红壤模拟溶液pH值电化学阻抗谱    
Abstract

The electrochemical behavior of X80 pipeline steel in simulated red soil solutions with different pH, which aim to simulate the corrosive medium of typical red soil at Yingtan area of the Southeast China was studied by potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS) and three-dimensional video microscope. The results show that the corrosion of X80 steel in simulated red soil solution is controlled by oxygen depolarization reactions when pH is 5.5; a corrosion products scale formed on the steel surface due to corrosion; the EIS of the corroded steel is composed of incomplete capacitive arc at high-frequency and complete capacitive arc at low-frequency. With increasing pH value, the corrosion processes of X80 steel gradually convert into being controlled by electrochemical activation, while its corrosion current density increases gradually and its corrosion resistance decreases. When pH value reduces to the range 4.0~3.0, numerous corrosion pits occur on the surface of X80 steel and correspondingly inductive arc appears in the low-frequency region of EIS.

Key wordsX80 pipeline steel    simulated red soil solution    pH    electrochemical impedance spectroscopy (EIS)
    
ZTFLH:  TG179  
基金资助:国家自然科学基金项目 (51161021) 资助
作者简介: null

刘淑云,女,1990年生,硕士生

引用本文:

刘淑云, 王帅星, 杜楠, 王力强, 肖金华. X80管线钢在不同pH值红壤模拟溶液中的腐蚀电化学行为[J]. 中国腐蚀与防护学报, 2015, 35(1): 21-26.
Shuyun LIU, Shuaixing WANG, Nan DU, Liqiang WANG, Jinhua XIAO. Electrochemical Behavior of X80 Pipeline Steel in Simulated Red Soil Solutions with Different pH. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 21-26.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.241      或      https://www.jcscp.org/CN/Y2015/V35/I1/21

图1  X80钢在不同pH值的红壤模拟溶液中的动电位极化曲线
pH icorr / (Acm-2) Ecorr / V
5.5 1.367×10-6 -0.3604
5.0 1.691×10-6 -0.4204
4.5 1.868×10-6 -0.4157
4.0 2.928×10-6 -0.4102
3.5 6.700×10-6 -0.5101
3.0 1.130×10-5 -0.6403
表1  X80钢在不同pH值的红壤模拟溶液中的极化曲线拟合结果
图2  X80钢在不同pH值的红壤模拟溶液中的电化学阻抗Nyquist图及等效电路图
pH Rct / Ωcm2 Qdl / Fcm-2 ndl Rf / Ωcm2 Lf / Hcm-2 Qf / Fcm-2 nf R0 / Ωcm2 L0 / Hcm-2
5.5 221.8 8.67×10-5 0.8379 47.14 --- 6.578×10-8 0.8655 --- ---
5.0 145.6 1.813×10-4 0.8058 38.77 --- 3.578×10-7 0.8390 --- ---
4.5 118.4 3.051×10-4 0.7827 30.62 --- 9.026×10-7 0.7927 --- ---
4.0 84.5 7.148×10-4 0.7368 20.57 12.39 4.262×10-4 0.1726 11.84 3.681×10-5
3.5 46.9 3.567×10-4 0.816 11.72 2.8 1.051×10-4 0.0750 3.145 1.077×10-5
3.0 47.48 3.115×10-4 0.8856 17.55 10.21 3.304×10-4 0.0809 3.182 1.052×10-4
表2  X80钢在不同pH值的红壤模拟溶液中的EIS拟合结果
图3  不同pH值下的Rct曲线
图4  不同pH值下的Rf和nf曲线
图5  X80钢在不同pH值的红壤模拟溶液中经EIS测试后的表面形貌
[1] Kong J H, Guo B, Liu C M, et al. Research and development of high strength pipeline steel X80[J]. Mater. Rev., 2004, 18(4): 23
[1] (孔君华, 郭斌, 刘昌明等. 高钢级管线钢X80的研制与发展[J]. 材料导报, 2004, 18(4): 23)
[2] Niu J, Qi L H, Liu Y L, et al. Tempering microstructure and mechanical properties of pipeline steel X80[J]. Trans. Nonferrous Met. Soc. China, 2009, 19(3): 573
[3] Wang Y, Yu H Y, Cheng Y, et al. Corrosion behavior of X80 steel in different simulated soil solution[J]. Mater. Eng., 2012, 1: 25
[3] (王莹, 俞红英, 程远等. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, 1: 25)
[4] Zhao B, Du C W, Liu Z Y, et al. Corrosion behavior of X80 steel in Yingtan soil simulated solution under disboned coating[J]. Acta Metall. Sin., 2012, 48(2): 1530
[4] (赵博, 杜翠薇, 刘智勇等. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(2): 1530)
[5] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des.,2009, 30(5): 1712
[6] Liu Z Y, Zhai G L, Du C W, et al. Stress corrosion behavior of X70 pipeline steel in simulated solution of acid soil[J]. Acta Metall. Sin., 2008, 44(2): 209
[6] (刘智勇, 翟国丽, 杜翠薇等. X70钢在酸性土壤模拟溶液中的应力腐蚀行为[J]. 金属学报, 2008, 44(2): 209)
[7] Xu C M, Huo C Y, Xiong Q R, et al. Corrosion behavior of X80 pipeline steel in simulated acid soil solution[J]. Mater. Mech. Eng., 2009, 33(5): 29
[7] (胥聪敏, 霍春勇, 熊庆人等. X80管线钢在酸性土壤模拟溶液中的腐蚀行为[J]. 机械工程材料, 2009, 33(5): 29)
[8] Liang P, Du C W, Li X G, et al. Grey relation space analysis of effect of environmental factors on corrosion resistance of X70 pipeline steel in Yingtan soil simulated solution[J]. Corros. Prot., 2009, 30(2): 231
[8] (梁平, 杜翠薇, 李晓刚等. X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析[J]. 腐蚀与防护, 2009, 30(4): 231)
[9] Liang P, Li X G, Du C W, et al. Effect of dissolved oxygen on corrosion resistance of X80 piepline steel in NS4 solution[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 20
[9] (梁平, 李晓刚, 杜翠薇等. 溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 20)
[10] Chen X, Du C W, Li X G. Influence of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil[J]. J. Petrochem. Univ., 2007, 20(4): 55
[10] (陈旭, 杜翠薇, 李晓刚. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响[J]. 石油化工高等学校学报, 2007, 20(4): 55)
[11] He J L,Long G,Huang Y,et al. Spatial and Temporal Distribution Law of Acid Rain in Jiangxi Province[M]. Beijing: China Environmental Science Press, 1998
[11] (何纪力,龙刚,黄云等. 江西省酸雨时空分布规律研究[M]. 北京: 中国环境科学出版社, 1998)
[12] Eliyan F F, Mahdi E, Alfantazi A. Electrochemical evaluation of the corrosion behavior of API-X100 piepline steel in aerated bicarbonated solutions[J]. Corros. Sci., 2012, 58: 181
[13] Cao C N,Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2002
[13] (曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[14] Li M C, Lin H C, Cao C N. Study on soil corrosion of carbon steel by electrochemical impedance spectroscopy (EIS)[J]. J. Chin. Soc.
[14] Corros. Prot., 2000, 20(2): 111
[14] (李谋成, 林海潮, 曹楚南. 碳钢在土壤中腐蚀的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2000, 20(2): 111)
[1] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[2] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.
[3] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[8] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[10] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[12] 钟显康,扈俊颖. 恒定的pH值和Fe2+浓度下X65碳钢的CO2腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[13] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[14] 乔越, 朱志平, 杨磊, 刘志峰. 高温状态下锅炉给水氧化还原电位监测与模拟实验研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.