Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (3): 251-255    
  研究报告 本期目录 | 过刊浏览 |
一种组合添加剂在碱性无氰镀锌中的作用
杜楠1,舒伟发2,王春霞1,王帅星1,陈庆龙2
1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
2. 南京机电液压工程研究中心 南京 211106
FUNCTION OF A COMBINATORIAL ADDITIVE ON ALKALINE NON-CYANIDE ZINC PLATING
DU Nan1, SHU Weifa2, WANG Chunxia1, WANG Shuaixing1, CHEN Qinglong2
1.National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology Institute,Nanchang Hangkong University, Nanchang 330063
2. Nanjing Engineering Center of Aircraft Systems, Nanjing 211106
全文: PDF(1534 KB)  
摘要: 通过在碱性无氰镀锌溶液中添加一种组合添加剂获得了晶粒尺寸在60nm以内的纳米晶镀锌层,并通过对比有无添加剂时Zn的析出电位、镀锌层微观形貌及晶粒度的差异,分析了组合添加剂中两种组分的作用。结果表明,两种添加剂分别起到细化晶粒和整平作用,二者一起使用有很强的协调作用。
关键词 纳米镀锌添加剂形貌协同作用    
Abstract:The nanocrystalline zinc coating which the grain size was within 60 nm was obtained when a combinatorial additive was added to alkaline non-cyanide bath. Besides, the role of two components of combinatorial additive was analyzed through comparing the differences with deposition potential、morphology and grain size of zinc coatings which were obtained in the bath contained additives or not. The results showed that the additive A played a role of grain refinement, the additive B played a role of leveling, and a strong synergistic effect was existed when both A and B was used.
Key wordsnano-zinc electroplating    additive    morphology    synergistic effect
收稿日期: 2011-03-31     
ZTFLH: 

TG174.45

 
基金资助:

江西省教育厅2011年度重点科技项目(GJJ11023)资助

通讯作者: 杜楠     E-mail: d_unan@sina.com
Corresponding author: DU Nan     E-mail: d_unan@sina.com
作者简介: 杜楠,男,1956年生,教授,研究方向为材料物理与化学

引用本文:

杜楠,舒伟发,王春霞,王帅星,陈庆龙. 一种组合添加剂在碱性无氰镀锌中的作用[J]. 中国腐蚀与防护学报, 2012, 32(3): 251-255.
DU Nan, YU Wei-Fa. FUNCTION OF A COMBINATORIAL ADDITIVE ON ALKALINE NON-CYANIDE ZINC PLATING. J Chin Soc Corr Pro, 2012, 32(3): 251-255.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I3/251

[1] Yan X C, Wen H, Yu N, et al. Corrosion and inhibition mechanism of zinc nanocrystalline electrodeposition in sulfuric acid solution[J]. J. Wuhan Univ. (Nat. Sci.), 2005, 41(6): 683-686

    (颜肖慈, 文汉, 余娜等. 纳米锌镀层在硫酸中的腐蚀和缓蚀机理[J].武汉大学学报(理学版), 2005, 41(6): 683-686)

[2] Wu X F. Study on technics of high efficient alkaline non-cyanide zinc plating[J]. Electroplat. Finish., 2005, 11(24):43-45

    (吴旭峰. 高效碱性无情镀锌工艺研究[J]. 电镀与涂饰, 2005, 11(24):43-45)

[3] Kavitha B, Santhosh P, Renukaelevi M, et al. Role of organic additives on zinc plating[J]. J.Power Sour., 1995, 55: 53-62

[4] Shivkumar R, Kalaignan G P, Vasudevan T. Effect of additives on zinc electrodes in alkaline battery systems[J]. Surf.Coat. Technol, 2006, 210: 3428-3442

[5] Ravindran V, Muralidharan V S. Cathodic process on zinc in alkaline zincate soluion[J]. J. Power Sour., 1995, 55: 237-241

[6] Ghavanmi R K, Rafiei Z. Performance improvements of alkaline batteries by studying kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc[J]. J. Power Sour., 2006, 162: 893-899

[7] Mouanga M, Ricq L, Douglade J, et al. Effects of some additives on the corrosion behaviour and preferred orientations of zinc obtained by continuous current deposition[J]. J.Appl.Electrochem., 2007, 37: 283-289

[8] Sekar R, Eagammai C, Jayakrishnan S. Effect of additives on electrodeposition of tin and its structural and corrosion behaviour[J]. J.Appl. Electrochem, 2010, 40: 49-57

[9] Li M C, Jiang L L, Wen Q Z, et al. Electrochemical corrosion behavior of nanocrystalline zinc coatings in 3.5% NaCl solutions[J]. Solid State Electrochem., 2007, 11: 1319-1325

[10] Wu Y Q, Li M C, Xin S S, et al. Effect of three additives on electrodeposition behavior and structure of nanocrystalline zinc coatings [J]. Acta Chim. Sin., 2010, 68(6): 531-534

     (伍玉琴,李谋成, 辛森森等. 三种添加剂对纳米晶锌镀层电沉积行为及结构的影响[J].化学学报, 2010, 68(6): 531-534)

[11] Yang F Z, Huang L, Xu S K, et al. Leveling ability of additives and their effects on structure of Cu electrodeposits [J].J. Xiamen Univ. (Nat. Sci), 2003, 42(1): 56-59

     (杨防祖, 黄令,许书凯等. 添加剂的整平能力及其对Cu电沉积层结构的影响[J].厦门大学学报(自然科学版), 2003, 42(1): 56-59)
[1] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[3] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[4] 张天翼,柳伟,范玥铭,李世民,董宝军,BANTHUKUL Wongpat,CHOWWANONTHAPUNYA Thee. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 511-518.
[5] 孔祥峰, 张婧, 姜源庆, 褚东志, 李春虎, 高楠, 吕婧, 邹妍. 基于失重法的水下焊接接头腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 226-232.
[6] 陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
[7] 杨颖, 林翠, 赵晓斌, 张翼飞. TA2在LiBr溶液中的初期空化腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[8] 张漫路,赵景茂. 缓蚀剂协同效应与协同机理的研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 1-10.
[9] 叶超, 杜楠, 田文明, 赵晴, 朱丽. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[10] 程从前, 曹铁山, 王冬颖, 姚景文, 王健, 关锰, 赵杰. Cr13不锈钢在盐酸溶液喷射冲刷作用下的表面腐蚀形貌表征[J]. 中国腐蚀与防护学报, 2014, 34(5): 439-444.
[11] 崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[12] 吴堂清, 杨圃, 张明德, 许进, 闫茂成, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 353-358.
[13] 刘涛, 艾军, 张丽芳, 张鹏飞, 杨朝辉, 徐春林. 基于图像处理技术的钢箱梁防腐涂层寿命预测实验研究[J]. 中国腐蚀与防护学报, 2013, 33(5): 407-412.
[14] 熊媛媛 张 娅 胡少峰 陈秋荣, 谢有桃. 添加剂La(CH3COO)3和NaF对AZ31在
Mg(ClO4)2溶液中电化学性能的影响
[J]. 中国腐蚀与防护学报, 2013, 33(3): 241-244.
[15] 韩夏冰 高志明 党丽华 王 迎 毕慧超. Q235钢在模拟大气环境中
早期腐蚀图像小波包分析
[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.