Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (5): 389-394    
  研究报告 本期目录 | 过刊浏览 |
磷酸锌对环氧涂层划痕的保护尺寸研究
石秋梅,邵亚薇,张涛,孟国哲,陈琪昊
哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING
SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao
Materials Science & Chemistry Engineering College, Harbin Engineering University, Harbin 150001
全文: PDF(1229 KB)  
摘要: 用电化学阻抗谱(EIS)、电化学噪声(EN)及扫描电子显微镜(SEM)研究磷酸锌对磷酸锌/环氧涂层的保护作用及其保护尺寸的变化规律。研究表明,磷酸锌使划痕处的腐蚀产物变得致密,并对划痕有保护作用,随着划痕尺寸的增大其保护作用逐渐减弱。利用电化学噪声的散粒噪声理论并结合Gumbel随机分析方法研究磷酸锌的作用机制,发现磷酸锌填料的加入降低磷酸锌/环氧涂层的腐蚀生长概率,最终降低金属的腐蚀速度。
关键词 环氧涂层磷酸锌保护尺寸电化学阻抗谱电化学噪声    
Abstract:The protection dimension of scratched zinc phosphate/epoxy coating was studied by means of electrochemical impedance spectroscopy (EIS), electrochemical noise measurements (EN) and scanning electron microscopy (SEM). The experimental results of EN, EIS and SEM revealed that zinc phosphate could inhibit the corrosion of the scratched epoxy coatings; the protection effect was gradually weakened with increasing scratch dimension from 0.4 mm, 1.0 mm to 2.0 mm. The mechanism of the inhibition of zinc phosphate pigment was analyzed based upon the shot noise theory combined with Gumbel distribution function. It showed that the corrosion growth probability of the metal under the coating decreased with the addition of zinc phosphate.
Key wordsepoxy coating    zinc phosphate    protection dimension    electrochemical impedance spectroscopy    electrochemical noise
收稿日期: 2010-03-24     
ZTFLH: 

TG174.36

 
通讯作者: 石秋梅     E-mail: shaoyawei@hrbeu.edu.cn
Corresponding author: SHI Qiumei     E-mail: shaoyawei@hrbeu.edu.cn
作者简介: 石秋梅,女,1985年生,硕士生,研究方向为材料腐蚀与防护

引用本文:

石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
DAN Qiu-Mei, SHAO Ya-Wei. PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING. J Chin Soc Corr Pro, 2011, 31(5): 389-394.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I5/389

[1] Shao Y W, Cao J, Meng G Z, et al. The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel [J]. Corros. Sci., 2009, 51: 371-379

[2] Chromy L, Kaminska E. Non-toxic anticorrosive pigments [J]. Prog. Org. Coat., 1990, 18: 319

[3] Mahdavian A, Attar M M. Investigation on zinc phosphate effectiveness at different pigment volume concentrations via electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2005, 50: 4645

[4] Naderi R, Attar M M. Application of the electrochemical noise method to evaluate the effectiveness of modification of zinc phosphate anticorrosion pigment [J]. Corros. Sci., 2009, 51: 1671-1674

[5] Yuan A Q, Ma S M, Zhou Z G. Low-cost technological study on the environmental friendly antirust pigment called zinc phosphate [J]. Anti-corrosion, 2003, (7): 36-38

    (袁爱群, 马少妹, 周泽广.对环境友好的磷酸锌防腐颜料低成 本工艺的研究 [J]. 防腐蚀, 2003, (7):36-38)

[6] Yang Z Z. The development of the low/nontoxic zinc phosphate series anticorrosive pigments [J]. China Paint, 2001, (6): 38-40, 46

    (杨宗志. 磷酸锌系低/无毒防锈颜料的发展 [J]. 中国涂料. 2001, (6): 38-40, 46)

[7] Li W M, Song Y S, Deng S Z. The Corrosion of Coating Metal [M]. Changsha: National University of Defense Technology Press, 2003: 86

    (黎完模, 宋玉苏, 邓淑珍.涂装金属的腐蚀 [M]. 长沙: 国 防科技大学出版社, 2003: 86)

[8] Liu C, Bi Q, Leyland A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrosion behaviour [J]. Corros. Sci., 2003, 45: 1257-1273

[9] Liu C, Bi Q,Matthews A. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution [J]. Corros.Sci., 2001, 43: 1953-1961

[10] Zhang J Q. On EIS displays of zinc rich coatings [J]. J. Chin. Soc. Corros. Prot., 1996, 16(3):175-180

     (张鉴清. 富锌涂层的电化学阻抗谱特性 [J].中国腐蚀与防护学 报, 1996, 16(3): 175-180)

[11] Flis J, Dawson J L, Gill J. Impedance and electrochemical noise measurements on iron and iron-carbon alloys in hot caustic soda [J]. Corros. Sci.,1991, 8: 877-892

[12] Uruchurtu J. Electrochemical investigations of the activation mechanism of aluminum [J].Corrosion, 1991, 47(6): 472

[13] Smulko J, Darowicki K. Nonlinearity of electrochemical noise caused by pitting corrosion [J]. J. Electroanal. Chem., 2003, 545: 59

[14] Monticelli C, Brunoro G, Frignani A. Evaluation of corrosion inhibitors by electrochemical noise analysis [J]. J. Electrochem. Soc., 1992, 139:706

[15] Cao C N. Studies on the spectral analyses in the electrochemistry of corrosion [J]. Corros. Sci. Prot. Technol.,1993, 5(1): l-9

     (曹楚南. 腐蚀电化学中的频谱分析研究 [J].腐蚀科学 与防护技术, 1993, 5(1): 1-9)

[16] Bertocci U, Frydman J, Gabrielli C. Analysis of electrochemical noise by power spectral density applied to corrosion studies [J]. J. Electrochem. Soc.,l998, l45(8): 2780-2785

[17] Aballe A, Bethencourt M, Botana F J, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1(7): 266

[18] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical paramenters of the estimation of corrosion mechanisms [J]. Corros. Sci., 2005,47: 3280-3299

[19] Eden D A, Hladky K, John D G, et al. Electrochemical noise-simultaneous monitoring of potential and current noise signals from corroding electrodes [C]. Corrosion,1986, 86: 274

[20] R A Cottis. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57: 265-285

[21] Al-Mazeedi H A A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787-2793

[22] Al- Mazeed H A, Cottis R A. A practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta,2004, 49(17-18): 2787-2793

[23] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280-3299

[24] Gumbel E J. Statistical Theory of Extreme Values and Some Practical Applications [M]. U.S. Nat. Bur. Stand., 1954\par
[1] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[2] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[3] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[4] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] 达波,余红发,麻海燕,吴彰钰. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[7] 达波,余红发,麻海燕,吴彰钰. 阻锈剂的掺入方式对全珊瑚海水混凝土中钢筋锈蚀的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[8] 邓培昌, 刘泉兵, 李子运, 王贵, 胡杰珍, 王勰. X70管线钢在热带海水-海泥跃变区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[10] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[11] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[12] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[15] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.